Publications by authors named "Verhoye M"

Article Synopsis
  • Brain organoids are 3D cultures derived from stem cells that mimic in vivo brain development and functions, offering advantages over traditional 2D cell cultures and animal models.
  • A significant limitation is their lack of diverse cell types, particularly from endodermal and mesodermal origins, prompting research on integrating functional vasculature and microglial cells.
  • The review focuses on immune-competent brain organoids, emphasizing their potential for studying neuronal network formation and inflammatory responses, while highlighting the need for further validation in therapeutic applications against inflammation-related neurodegeneration.
View Article and Find Full Text PDF

Background: Huntington's disease (HD) is marked by irreversible loss of neuronal function for which currently no availability for disease-modifying treatment exists. Advances in the understanding of disease progression can aid biomarker development, which in turn can accelerate therapeutic discovery.

Methods: We characterised the progression of altered dynamics of whole-brain network states in the zQ175DN mouse model of HD using a dynamic functional connectivity (FC) approach to resting-state fMRI and identified quasi-periodic patterns (QPPs) of brain activity constituting the most prominent resting-state networks.

View Article and Find Full Text PDF

The present study aims to investigate whether begging calls elicit specific auditory responses in non-parenting birds, whether these responses are influenced by the hormonal status of the bird, and whether they reflect biparental care for offspring in the European starling (). An fMRI experiment was conducted to expose non-parenting male and female European starlings to recordings of conspecific nestling begging calls during both artificially induced breeding and non-breeding seasons. This response was compared with their reaction to conspecific individual warbling song motifs and artificial pure tones, serving as social species-specific and artificial control stimuli, respectively.

View Article and Find Full Text PDF

Background And Objective: Alzheimer's disease (AD) is one of the leading causes of dementia, affecting the world's population at a growing rate. The preclinical stage of AD lasts over a decade, hence understanding AD-related early neuropathological effects on brain function at this stage facilitates early detection of the disease.

Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) has been a powerful tool for understanding brain function, and it has been widely used in AD research.

View Article and Find Full Text PDF

induced-pluripotent stem cell (iPSC)-derived neurospheroid (NSPH) models are an emerging in vitro toolkit to study the influence of inflammatory triggers on neurodegeneration and repair in a 3D neural environment. In contrast to their human counterpart, the absence of murine iPSC-derived NSPHs for profound characterisation and validation studies is a major experimental research gap, even though they offer the only possibility to truly compare or validate in vitro NSPH responses with in vivo brain responses. To contribute to these developments, we here describe the generation and characterisation of 5-week-old CXCR1 CCR2 murine (m)iPSC-derived bi-partite (neurons + astrocytes) and tri-partite (neurons + astrocytes + microglia) NSPH models that can be subjected to cellular activation following pro-inflammatory stimulation.

View Article and Find Full Text PDF

Echolocating bats are among the most social and vocal of all mammals. These animals are ideal subjects for functional MRI (fMRI) studies of auditory social communication given their relatively hypertrophic limbic and auditory neural structures and their reduced ability to hear MRI gradient noise. Yet, no resting-state networks relevant to social cognition (e.

View Article and Find Full Text PDF

This study investigates brain network alterations in the default mode-like network (DMLN) at early stages of disease progression in a rat model of Alzheimer's disease (AD) with application in the development of early diagnostic biomarkers of AD in translational studies. Thirteen male TgF344-AD (TG) rats, and eleven male wild-types (WT) littermates underwent longitudinal resting-state fMRI at the age of 4 and 6 months (pre and early-plaque stages of AD). Alterations in connectivity within DMLN were characterized by calculating the nodal degree (ND), a graph theoretical measure of centrality.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in memory loss and cognitive decline. Synaptic dysfunction is an early hallmark of the disease whose effects on whole-brain functional architecture can be identified using resting-state functional MRI (rsfMRI). Insights into mechanisms of early, whole-brain network alterations can help our understanding of the functional impact of AD's pathophysiology.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is marked by a CAG-repeat expansion in the huntingtin gene that causes neuronal dysfunction and loss, affecting mainly the striatum and the cortex. Alterations in the neurovascular coupling system have been shown to lead to dysregulated energy supply to brain regions in several neurological diseases, including HD, which could potentially trigger the process of neurodegeneration. In particular, it has been observed in cross-sectional human HD studies that vascular alterations are associated to impaired cerebral blood flow (CBF).

View Article and Find Full Text PDF

Objective: To compare the diagnostic performance of postmortem ultrasound (PMUS), 9.4 T magnetic resonance imaging (MRI) and microfocus computed tomography (micro-CT) for the examination of early gestation fetuses.

Method: Eight unselected fetuses (10-15 weeks gestational age) underwent at least 2 of the 3 listed imaging examinations.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive neurodegenerative disease affecting motor and cognitive abilities. Multiple studies have found white matter anomalies in HD-affected humans and animal models of HD. The identification of sensitive white-matter-based biomarkers in HD animal models will be important in understanding disease mechanisms and testing the efficacy of therapeutic interventions.

View Article and Find Full Text PDF
Article Synopsis
  • * Functional imaging techniques, particularly resting-state fMRI and PET, are valuable for evaluating brain network activity noninvasively over time in both humans and rodents.
  • * There is a need for more research using rs-fMRI and PET in infant rodent models to better understand NDDs, as these methods could help identify biomarkers for neurodevelopmental dysfunction and improve treatment evaluation strategies.
View Article and Find Full Text PDF

The hippocampus plays a vital role in navigation, learning, and memory, and is affected in Alzheimer's disease (AD). This study investigated the classification of AD-transgenic rats versus wild-type littermates using electrophysiological activity recorded from the hippocampus at an early, presymptomatic stage of the disease (6 months old) in the TgF344-AD rat model. The recorded signals were filtered into low frequency (LFP) and high frequency (spiking activity) signals, and machine learning classifiers were employed to identify the rat genotype (TG vs.

View Article and Find Full Text PDF

Background: Actual Flip angle Imaging (AFI) is a sequence used for B mapping, also embedded in the Variable flip angle with AFI for simultaneous estimation of T , B and equilibrium magnetization.

Purpose: To investigate the design of a preparation module for AFI to allow a fast approach to steady state (SS) without requiring the use of dummy acquisitions.

Methods: The features of a preparation module with a B insensitive adiabatic pulse, spoiler gradients, and a recovery time were studied with simulations and validated via experiments and acquired with different k-space traveling strategies.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder caused by expanded (≥ 40) glutamine-encoding CAG repeats in the huntingtin gene, which leads to dysfunction and death of predominantly striatal and cortical neurons. While the genetic profile and clinical signs and symptoms of the disease are better known, changes in the functional architecture of the brain, especially before the clinical expression becomes apparent, are not fully and consistently characterized. In this study, we sought to uncover functional changes in the brain in the heterozygous (HET) zQ175 delta-neo (DN) mouse model at 3, 6, and 10 months of age, using resting-state functional magnetic resonance imaging (RS-fMRI).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a severe neurodegenerative disorder caused by the accumulation of toxic proteins, amyloid-beta (Aβ) and tau, which eventually leads to dementia. Disease-modifying therapies are still lacking, due to incomplete insights into the neuropathological mechanisms of AD. Synaptic dysfunction is known to occur before cognitive symptoms become apparent and recent studies have demonstrated that imbalanced synaptic signaling drives the progression of AD, suggesting that early synaptic dysfunction could be an interesting therapeutic target.

View Article and Find Full Text PDF
Article Synopsis
  • * It introduces StandardRat, a standardized fMRI acquisition protocol for rats that has been tested across 20 research centers to enhance data integration.
  • * The standardized protocol and processing pipeline improve the reliability of detecting functional connectivity patterns and are made publicly available to foster collaboration in the neuroimaging field.
View Article and Find Full Text PDF

Huntington's disease is an autosomal, dominantly inherited neurodegenerative disease caused by an expansion of the CAG repeats in exon 1 of the huntingtin gene. Neuronal degeneration and dysfunction that precedes regional atrophy result in the impairment of striatal and cortical circuits that affect the brain's large-scale network functionality. However, the evolution of these disease-driven, large-scale connectivity alterations is still poorly understood.

View Article and Find Full Text PDF

Background: Imbalanced synaptic transmission appears to be an early driver in Alzheimer's disease (AD) leading to brain network alterations. Early detection of altered synaptic transmission and insight into mechanisms causing early synaptic alterations would be valuable treatment strategies. This study aimed to investigate how whole-brain networks are influenced at pre- and early-plague stages of AD and if these manifestations are associated with concomitant cellular and synaptic deficits.

View Article and Find Full Text PDF

Purpose: To introduce a novel imaging and parameter estimation framework for accurate multi-shot diffusion MRI.

Theory And Methods: We propose a new framework called ADEPT (Accurate Diffusion Echo-Planar imaging with multi-contrast shoTs) that enables fast diffusion MRI by allowing diffusion contrast settings to change between shots in a multi-shot EPI acquisition (i.e.

View Article and Find Full Text PDF

Quantitative Magnetic Resonance (MR) imaging provides reproducible measurements of biophysical parameters, and has become an essential tool in clinical MR studies. Unfortunately, 3D isotropic high resolution (HR) parameter mapping is hardly feasible in clinical practice due to prohibitively long acquisition times. Moreover, accurate and precise estimation of quantitative parameters is complicated by inevitable subject motion, the risk of which increases with scanning time.

View Article and Find Full Text PDF
Article Synopsis
  • Thyroid hormones influence the seasonal reproductive behaviors in songbirds, specifically how these hormones interact with song behavior and brain plasticity, although further research is needed.
  • In male European starlings, thyroid hormone transporter LAT1 is more active during the photosensitive phase, suggesting thyroid hormones may facilitate brain changes when conditions are right for neuroplasticity, while DIO3 limits their effects during the breeding season.
  • A study of hypothyroidism's effect on song behavior using MRI revealed that lower thyroid hormone levels coincide with increased neuroplasticity signals, and insufficient thyroid hormones can suppress testosterone levels, ultimately impacting song quality and brain structure development.
View Article and Find Full Text PDF

Traditionally, research unraveling seasonal neuroplasticity in songbirds has focused on the male song control system and testosterone. We longitudinally monitored the song behavior and neuroplasticity in male and female starlings during multiple photoperiods using Diffusion Tensor and Fixel-Based techniques. These exploratory data-driven whole-brain methods resulted in a population-based tractogram confirming microstructural sexual dimorphisms in the song control system.

View Article and Find Full Text PDF
Article Synopsis
  • Premenopausal bilateral ovariectomy is linked to a higher risk of Alzheimer's disease, but the reasons behind this connection are not fully understood.
  • In a study using rodent models of Alzheimer's, it was found that ovariectomized transgenic mice exhibited changes like increased hypothalamic energy metabolism and reduced brain connectivity compared to their sham-operated counterparts.
  • The research showed that both the genetic type of the mice and the ovariectomy procedure influenced brain imaging markers related to Alzheimer's, but no significant interaction between the type of surgery and genotype was found regarding specific protein levels linked to the disease.
View Article and Find Full Text PDF