Publications by authors named "Verhoelst C"

Thyroid hormones orchestrate amphibian metamorphosis. The type 2 and type 3 deiodinases make vital contributions to this process by controlling levels of the thyroid hormones T(4) and T(3) available to different tissues. Because the tadpole thyroid gland is not functional until stage NF44, it has been widely assumed that thyroid signaling is absent during amphibian early development, thyroid hormone only becoming a major regulator during premetamorphic stages.

View Article and Find Full Text PDF

Because the avian thyroid gland secretes almost exclusively thyroxine (T4), the availability of receptor-active 3,3',5-triiodothyronine (T3) has to be regulated in the extrathyroidal tissues, essentially by deiodination. Like mammals and most other vertebrates, birds possess three types of iodothyronine deiodinases (D1, D2, and D3) that closely resemble their mammalian counterparts, as shown by biochemical characterization studies in several avian species and by cDNA cloning of the three enzymes in chicken. The tissue distribution of these deiodinases has been studied in detail in chicken at the level of activity and mRNA expression.

View Article and Find Full Text PDF

Thyroid hormones (TH) play a crucial role in various developmental processes in all vertebrates. The expression of a number of thyroid hormone responsive genes is of critical importance in processes like cell maturation and migration. Since these genes are mostly regulated by binding of the receptor-active TH (T(3)) to the thyroid hormone receptor, the availability of this T(3) is indispensable for correct brain lamination.

View Article and Find Full Text PDF

It is accepted that type II iodothyronine deiodinase (D2) is predominantly found in brain, where it maintains homeostasis of thyroid hormone (TH) levels. The current study describes the production of a polyclonal D2 antiserum and its use in the comparison of D2 protein distribution with that of type I (D1) and type III (D3) deiodinase protein in the chicken choroid plexus (CP). Immunocytochemistry showed high D2 protein expression in the epithelial cells of the CP, whereas the D1 and D3 proteins were absent.

View Article and Find Full Text PDF

Glucocorticoids as well as thyroid hormones are essential for normal brain development. Exogenous glucocorticoids stimulate 3,3',5-triiodothyronine (T(3)) availability in circulation of birds and similar effects have been observed in sheep. Chicken data indicate that glucocorticoid administration also stimulates thyroid hormone metabolism in brain but the effects on local thyroid hormone concentrations are not known.

View Article and Find Full Text PDF

It is widely accepted that type II iodothyronine deiodinase (D2) is mostly present in the brain, where it maintains the homeostasis of thyroid hormone (TH) levels. Although intensive studies have been performed on activity and mRNA levels of the deiodinases, very little is known about their expression at the protein level due to the lack of specific antisera. The current study reports the production of a specific D2 polyclonal antiserum and its use in the comparison of D2 protein distribution with that of type I (D1) and type III (D3) deiodinase protein in the choroid plexus at the blood-brain barrier level.

View Article and Find Full Text PDF

Iodothyronine deiodinase in vitro activity studies in the chicken showed the presence of type I and type III iodothyronine deiodinase activity in both liver and kidney. Due to the lack of a specific antiserum the cellular localization of the deiodinase proteins could not be revealed until now. In the present study, specific antisera were used to study the renal and hepatic distribution of type I and type III iodothyronine deiodinase protein in the chicken.

View Article and Find Full Text PDF

Immunocytochemistry using polyclonal anti-type I deiodinase (D1) led to the localization of D1 protein in the internal granule cells of the cerebellum in 1-day-old chicks, which was confirmed by the presence of in vitro D1 activity. Western blot analysis of hepatic and cerebellar extracts revealed a band of 27 kDa. In hypothyroid embryos D1 was expressed in both the internal and external granule cell layer and the signal diminished with more severe hypothyroidism, which is in agreement with the expected downregulation of D1 activity during hypothyroidism.

View Article and Find Full Text PDF

Because iodothyronine deiodinases play a crucial role in the regulation of the available intracellular T(3) concentration, it is important to determine their cellular localization. In brain, the presence of type III iodothyronine deiodinase (D3) seems to be important to maintain homeostasis of T(3) levels. Until now, no cellular localization pattern of the D3 protein was reported in chicken brain.

View Article and Find Full Text PDF