Publications by authors named "Verhaaf B"

The assessment of the presence of clonal lymphoproliferations via polymerase chain reaction (PCR)-based analysis of rearranged immunoglobulin (Ig) or T-cell receptor (TCR) genes is a valuable technique in the diagnosis of suspect lymphoproliferative disorders. Furthermore this technique is more and more used to evaluate dissemination of non-Hodgkin lymphoma and/or the presence of (minimal) residual disease. In this chapter we describe an integrated approach to assess clonality via analysis of Ig heavy chain (IGH), Ig kappa (IGK), TCR beta (TCRB), and TCR gamma (TCRG) gene rearrangements.

View Article and Find Full Text PDF

To identify oncogenic pathways in T cell acute lymphoblastic leukemia (T-ALL), we combined expression profiling of 117 pediatric patient samples and detailed molecular-cytogenetic analyses including the Chromosome Conformation Capture on Chip (4C) method. Two T-ALL subtypes were identified that lacked rearrangements of known oncogenes. One subtype associated with cortical arrest, expression of cell cycle genes, and ectopic NKX2-1 or NKX2-2 expression for which rearrangements were identified.

View Article and Find Full Text PDF

(Very) severe acquired aplastic anemia ((v)SAA) and myelodysplastic syndrome (MDS) are rare diseases in childhood. (V)SAA is a bone marrow (BM) failure syndrome characterized by immune-mediated destruction of hematopoietic progenitors. MDS is a malignant clonal stem cell disorder, of which the hypoplastic variant is, in case of absence of a cytogenetic clone, difficult to separate from (v)SAA.

View Article and Find Full Text PDF

The t(11;14)(p13;q11) is presumed to arise from an erroneous T-cell receptor delta TCRD V(D)J recombination and to result in LMO2 activation. However, the mechanisms underlying this translocation and the resulting LMO2 activation are poorly defined. We performed combined in vivo, ex vivo, and in silico analyses on 9 new t(11;14)(p13;q11)-positive T-cell acute lymphoblastic leukemia (T-ALL) as well as normal thymocytes.

View Article and Find Full Text PDF

The BIOMED-2 multiplex polymerase chain reaction (PCR) tubes for analysis of immunoglobulin and T-cell receptor (TCR) gene rearrangements have recently been introduced as a reliable and easy tool for clonality diagnostics in suspected lymphoproliferations. Quality and performance assessment of PCR-based clonality diagnostics is generally performed using human leukemia/lymphoma cell lines as controls. We evaluated the utility of 30 well-defined human T-cell lines for quality performance testing of the BIOMED-2 PCR primers and protocols.

View Article and Find Full Text PDF

Background And Objectives: The mutational status of the immunoglobulin heavy chain variable region genes (IGVH) is a strong indicator of prognosis in B-cell chronic lymphocytic leukaemia (CLL). Since the determination of the IGVH mutation status is very labor-intensive, alternative prognostically relevant markers would facilitate CLL diagnostics.

Design And Methods: Ten genes were selected from previously published gene expression profiling studies based on their differential expression in IGVH mutated versus unmutated cases of CLL, and tested with real-time quantitative polymerase chain reaction (RQ-PCR) in unpurified samples from 130 CLL patients.

View Article and Find Full Text PDF

To establish the most sensitive and efficient strategy of clonality diagnostics via immunoglobulin and T-cell receptor gene rearrangement studies in suspected lymphoproliferative disorders, we evaluated 300 samples (from 218 patients) submitted consecutively for routine diagnostics. All samples were studied using the BIOMED-2 multiplex polymerase chain reaction (PCR) protocol. In 176 samples, Southern blot (SB) data were also available, and the two types of molecular results were compared.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is associated with chromosomal aberrations characterized by juxtaposition of proto-oncogenes to T-cell receptor gene loci (TCR), resulting in the deregulated transcription of these proto-oncogenes. Here, we describe the molecular characterization of a novel chromosomal aberration, inv(14)(q11.2q32.

View Article and Find Full Text PDF

In addition to the classical Vkappa-Jkappa, Vkappa-kappa deleting element (Kde), and intron-Kde gene rearrangements, atypical recombinations involving Jkappa recombination signal sequence (RSS) or intronRSS elements can occur in the Igkappa (IGK) locus, as observed in human B cell malignancies. In-depth analysis revealed that atypical JkappaRSS-intronRSS, Vkappa-intronRSS, and JkappaRSS-Kde recombinations not only occur in B cell malignancies, but rather reflect physiological gene rearrangements present in normal human B cells as well. Excision circle analysis and recombination substrate assays can discriminate between single-step vs multistep rearrangements.

View Article and Find Full Text PDF

Tuberous sclerosis is caused by mutations to either the TSC1 or TSC2 tumor suppressor gene. The disease is characterized by a broad phenotypic spectrum that includes seizures, mental retardation, renal dysfunction, and dermatological abnormalities. TSC1 encodes a 130-kDa protein called hamartin, and TSC2 encodes a 200-kDa protein called tuberin.

View Article and Find Full Text PDF

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations to the TSC1 and TSC2 tumour suppressor genes. We detected two sequence changes involving the TSC2 stop codon and investigated the effects of these changes on the expression of tuberin, the TSC2 gene product, and on the binding between tuberin and the TSC1 gene product, hamartin. While elongation of the tuberin open reading frame by 17 amino acids did not interfere with tuberin-hamartin binding, a longer extension prevented this interaction.

View Article and Find Full Text PDF

Tuberous sclerosis (TSC) is an autosomal dominant disorder characterized by a broad phenotypic spectrum that includes seizures, mental retardation, renal dysfunction and dermatological abnormalities. Inactivating mutations to either of the TSC1 and TSC2 tumour suppressor genes are responsible for the disease. TSC1 and TSC2 encode two large novel proteins called hamartin and tuberin, respectively.

View Article and Find Full Text PDF