Heat transfer through heterointerfaces is intrinsically hampered by a thermal boundary resistance originating from the discontinuity of the elastic properties. Here, we show that with shrinking dimensions the heat flow from an ultrathin epitaxial film through atomically flat interfaces into a single crystalline substrate is significantly reduced due to violation of Boltzmann equipartition theorem in the angular phonon phase space. For films thinner than the phonons mean free path, we find phonons trapped in the film by total internal reflection, thus suppressing heat transfer.
View Article and Find Full Text PDFDry adhesives using surface microstructures inspired by climbing animals have been recognized for their potentially novel capabilities, with relevance to a range of applications including pick-and-place handling. Past work has suggested that performance may be strongly dependent on variability in the critical defect size among fibrillar sub-contacts. However, it has not been directly verified that the resulting adhesive strength distribution is well described by the statistical theory of fracture used.
View Article and Find Full Text PDFThe spatial distribution of the human epidermal growth factor 2 (HER2) receptor in the plasma membrane of SKBR3 and HCC1954 breast cancer cells was studied. The receptor was labeled with quantum dot nanoparticles, and fixed whole cells were imaged in their native liquid state with environmental scanning electron microscopy using scanning transmission electron microscopy detection. The locations of individual HER2 positions were determined in a total plasma membrane area of 991 μm for several SKBR3 cells and 1062 μm for HCC1954 cells.
View Article and Find Full Text PDFWhole cells can be studied in their native liquid environment using electron microscopy, and unique information about the locations and stoichiometry of individual membrane proteins can be obtained from many cells thus taking cell heterogeneity into account. Of key importance for the further development of this microscopy technology is knowledge about the effect of electron beam radiation on the samples under investigation. We used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to examine the effect of radiation for whole fixed COS7 fibroblasts in liquid.
View Article and Find Full Text PDF