Publications by authors named "Verena Schrameyer"

Denitrification supports anoxic growth of in infections. Moreover, denitrification may provide oxygen (O) resulting from dismutation of the denitrification intermediate nitric oxide (NO) as seen in . To examine the prevalence of NO dismutation we studied O release by in airtight vials.

View Article and Find Full Text PDF

Iodide ions (I) are an essential dietary mineral, and crucial for mental and physical development, fertility and thyroid function. I is also a high affinity substrate for the heme enzyme myeloperoxidase (MPO), which is involved in bacterial cell killing during the immune response, and also host tissue damage during inflammation. In the presence of HO and Cl, MPO generates the powerful oxidant hypochlorous acid (HOCl), with excessive formation of this species linked to multiple inflammatory diseases.

View Article and Find Full Text PDF

Plastic pollution is a global threat to marine ecosystems. Plastic litter can leach a variety of substances into marine environments; however, virtually nothing is known regarding how this affects photosynthetic bacteria at the base of the marine food web. To address this, we investigated the effect of plastic leachate exposure on marine , widely considered the most abundant photosynthetic organism on Earth and vital contributors to global primary production and carbon cycling.

View Article and Find Full Text PDF

There is a strong need for techniques that can quantify the important reactive oxygen species hydrogen peroxide (HO) in complex media and in vivo. We combined chemiluminescence-based HO measurements on a commercially available flow injection analysis (FIA) system with sampling of the analyte using microdialysis probes (MDPs), typically used for measurements in tissue. This allows minimally invasive, quantitative measurements of extracellular HO concentration and dynamics utilizing the chemiluminescent reaction of HO with acridinium ester.

View Article and Find Full Text PDF

Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks.

View Article and Find Full Text PDF

Sedimentation of fine sediment particles onto seagrass leaves severely hampers the plants' performance in both light and darkness, due to inadequate internal plant aeration and intrusion of phytotoxic HS. Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced light availability and the settling of suspended particles onto seagrass leaves potentially impeding gas exchange with the surrounding water. We used microsensors to determine O fluxes and diffusive boundary layer (DBL) thickness on leaves of the seagrass with and without fine sediment particles, and combined these laboratory measurements with microsensor measurements of tissue O and HS concentrations.

View Article and Find Full Text PDF

The broad range in physiological variation displayed by Symbiodinium spp. has proven imperative during periods of environmental change and contribute to the survival of their coral host. Characterizing how host and Symbiodinium community assemblages differ across environmentally distinct habitats provides useful information to predict how corals will respond to major environmental change.

View Article and Find Full Text PDF

The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI).

View Article and Find Full Text PDF

The light dependency of respiratory activity of two scleractinian corals was examined using O2 microsensors and CO2 exchange measurements. Light respiration increased strongly but asymptotically with elevated irradiance in both species. Light respiration in Pocillopora damicornis was higher than in Pavona decussata under low irradiance, indicating species-specific differences in light-dependent metabolic processes.

View Article and Find Full Text PDF

Despite extensive work on the genetic diversity of reef invertebrate-dinoflagellate symbioses on the Great Barrier Reef (GBR; Australia), large information gaps exist from northern and inshore regions. Therefore, a broad survey was done comparing the community of inshore, mid-shelf and outer reefs at the latitude of Lizard Island. Symbiodinium (Freudenthal) diversity was characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA.

View Article and Find Full Text PDF

The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization.

View Article and Find Full Text PDF