Step-growth and chain-growth are two major families of chemical reactions that result in polymer networks with drastically different physical properties, often referred to as hyper-branched and cross-linked networks. In contrast to step-growth polymerisation, chain-growth forms networks that are history-dependent. Such networks are defined not just by the degree distribution, but also by their entire formation history, which entails a modelling and conceptual challenges.
View Article and Find Full Text PDFIn every network, a distance between a pair of nodes can be defined as the length of the shortest path connecting these nodes, and therefore one may speak of a ball, its volume, and how it grows as a function of the radius. Spatial networks tend to feature peculiar volume scaling functions, as well as other topological features, including clustering, degree-degree correlation, clique complexes, and heterogeneity. Here we investigate a nongeometric random graph with a given degree distribution and an additional constraint on the volume scaling function.
View Article and Find Full Text PDFMany research fields, reaching from social networks and epidemiology to biology and physics, have experienced great advance from recent developments in random graphs and network theory. In this paper we propose a generic model of step-growth polymerisation as a promising application of the percolation on a directed random graph. This polymerisation process is used to manufacture a broad range of polymeric materials, including: polyesters, polyurethanes, polyamides, and many others.
View Article and Find Full Text PDFIn the printing, coating and ink industries, photocurable systems are becoming increasingly popular and multi-functional acrylates are one of the most commonly used monomers due to their high reactivity (fast curing). In this paper, we use molecular dynamics and graph theory tools to investigate the thermo-mechanical properties and topology of hexanediol diacrylate (HDDA) polymer networks. The gel point was determined as the point where a giant component was formed.
View Article and Find Full Text PDF