Dendritic cells (DC) represent the most potent antigen presenting cells and induce efficient cytotoxic T lymphocyte (CTL) responses against viral infections. Targeting antigens (Ag) to receptors on DCs is a promising strategy to enhance antitumor and antiviral immune responses induced by DCs. Here, we investigated the potential of CD11c-specific single-chain fragments (scFv) fused to an immunodominant peptide of Friend retrovirus for induction of virus-specific T cell responses by DCs.
View Article and Find Full Text PDFB cells are one of the targets of Friend virus (FV) infection, a well-established mouse model often used to study retroviral infections in vivo. Although B cells may be effective in stimulating cytotoxic T lymphocyte responses, studies involving their role in FV infection have mainly focused on neutralizing antibody production. Here we show that polyclonal activation of B cells promotes their infection with FV both in vitro and in vivo.
View Article and Find Full Text PDFPrevious studies have demonstrated the involvement of complement (C) in induction of efficient CTL responses against different viral infections, but the exact role of complement in this process has not been determined. We now show that C opsonization of retroviral particles enhances the ability of dendritic cells (DCs) to induce CTL responses both in vitro and in vivo. DCs exposed to C-opsonized HIV in vitro were able to stimulate CTLs to elicit antiviral activity significantly better than non-opsonized HIV.
View Article and Find Full Text PDF