ACS Appl Mater Interfaces
March 2024
Single particle tracking (SPT) is a powerful technique for real-time microscopic visualization of the movement of individual biomolecules within or on the surface of living cells. However, SPT often suffers from the suboptimal performance of the photon-emitting labels used to tag the biomolecules of interest. For example, fluorescent dyes have poor photostability, while quantum dots suffer from blinking that hampers track acquisition and interpretation.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a well-established treatment of cancer in which cell toxic reactive oxygen species, including singlet oxygen (O), are produced by a photosensitiser drug following irradiation of a specific wavelength. Visible light is commonly used as the excitation source in PDT, although these wavelengths do have limited tissue penetration. In this research, upconverting nanoparticles (UCNPs) functionalised with the photosensitiser Rose Bengal (RB) have been designed and synthesised for PDT of breast cancer cells.
View Article and Find Full Text PDFSingle-particle luminescence microscopy is a powerful method to extract information on biological systems that is not accessible by ensemble-level methods. Upconversion nanoparticles (UCNPs) are a particularly promising luminophore for single-particle microscopy as they provide stable, non-blinking luminescence and allow the avoidance of biological autofluorescence by their anti-Stokes emission. Recently, ensemble measurements of diluted aqueous dispersions of UCNPs have shown the instability of luminescence over time due to particle dissolution-related effects.
View Article and Find Full Text PDFUpconverting nanoparticles (UCNPs) are luminophores that have been investigated for a multitude of biological applications, notably low-background imaging, high-sensitivity assays, and cancer theranostics. In these applications, they are frequently used as a donor in resonance energy transfer (RET) pairs. However, because of the peculiarity and non-linearity of their luminescence mechanism, their behavior as a RET pair component has been difficult to predict quantitatively, preventing their optimization for subsequent applications.
View Article and Find Full Text PDFUpconversion nanoparticles (UCNPs) are attractive candidates for energy transfer-based analytical applications. In contrast to classical donor-acceptor pairs, these particles contain many emitting lanthanide ions together with numerous acceptor dye molecules at different distances to each other, strongly depending on the particle diameter. UCNPs with precisely controlled sizes between 10 and 43 nm were prepared and functionalized with rose bengal and sulforhodamine B by a ligand-exchange procedure.
View Article and Find Full Text PDFAn upconversion laser scanner has been optimized to exploit the advantages of photon-upconverting nanoparticles (UCNPs) for background-free imaging on a macroscopic scale. A collimated 980 nm laser beam afforded high local excitation densities to account for the nonlinear luminescence response of UCNPs. As few as 2000 nanoparticles were detectable, and the linear dynamic range covered more than 5 orders of magnitude, which is essentially impossible by using conventional fluorescent dyes.
View Article and Find Full Text PDFWe present a systematic study on the effect of surface ligands on the luminescence properties and colloidal stability of β-NaYF4:Yb(3+),Er(3+) upconversion nanoparticles (UCNPs), comparing nine different surface coatings to render these UCNPs water-dispersible and bioconjugatable. A prerequisite for this study was a large-scale synthetic method that yields ∼2 g per batch of monodisperse oleate-capped UCNPs providing identical core particles. These ∼23 nm sized UCNPs display an upconversion quantum yield of ∼0.
View Article and Find Full Text PDFCONSPECTUS: Photon upconversion nanoparticles (UCNPs) have emerged as a promising new class of nanomaterials due to their ability to convert near-IR light into visible luminescence. Unfortunately, most efficient methods for preparing UCNPs yield hydrophobic materials, but water-dispersibility is needed in the major fields of applications of UCNPs, that is, in bioimaging, labeling, and bioassays. Numerous methods therefore have been reported in the past years to convert the hydrophobic surface of UCNPs to a more hydrophilic one so to render them dispersible in aqueous systems.
View Article and Find Full Text PDF