We report on the realization, calibration, and test outdoor of a 19-inches rack 3-units sized Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) trace gas sensor designed for real-time carbon monoxide monitoring in ambient air. Since CO acts as a slow energy relaxer when excited in the mid-infrared spectral region, its QEPAS signal is affected by the presence of relaxation promoters, such as water vapor, or quenchers like molecular oxygen. We analyzed in detail all the CO relaxation processes with typical collisional partners in an ambient air matrix and used this information to evaluate oxygen and humidity-related effects, allowing the real CO concentration to be retrieved.
View Article and Find Full Text PDFA dual-gas sensor based on the combination of a quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor and an electronic hygrometer was realized for the simultaneous detection of methane (CH) and water vapor (HO) in air. The QEPAS sensor employed an interband cascade laser operating at 3.34 μm capable of targeting a CH absorption line at 2988.
View Article and Find Full Text PDFThe development of a dual-gas quartz-enhanced photoacoustic (QEPAS) sensor capable of simultaneous detection of water vapor and alternatively methane or nitrous oxide is reported. A diode laser and a quantum cascade laser (QCL) excited independently and simultaneously both the fundamental and the first overtone flexural mode of the quartz tuning fork (QTF), respectively. The diode laser targeted a water absorption line located at 7181.
View Article and Find Full Text PDFThe design and realization of two highly sensitive and easily interchangeable spectrophones based on custom quartz tuning forks, with a rectangular (S) or T-shaped (S) prongs geometry, is reported. The two spectrophones have been implemented in a QEPAS sensor for ethylene detection, employing a DFB-QCL emitting at 10.337 μm with an optical power of 74.
View Article and Find Full Text PDFWe report on the design, realization, and performance of novel quartz tuning forks (QTFs) optimized for quartz-enhanced photoacoustic spectroscopy (QEPAS). Starting from a QTF geometry designed to provide a fundamental flexural in-plane vibrational mode resonance frequency of ~16 kHz, with a quality factor of 15,000 at atmospheric pressure, two novel geometries have been realized: a QTF with T-shaped prongs and a QTF with prongs having rectangular grooves carved on both surface sides. The QTF with grooves showed the lowest electrical resistance, while the T-shaped prongs QTF provided the best photoacoustic response in terms of signal-to-noise ratio (SNR).
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
October 2018
Quartz tuning forks (QTFs) are piezo-transducers that have been implemented for numerous applications, such as chemical gas sensing, atomic force microscopy, rheology, and industrial process control. The most important parameter for QTFs' sensing application is the resonance quality factor (Q-factor). An experimental investigation and theoretical analysis of the influence of QTFs' geometries on the Q-factor of the flexural fundamental and first overtone resonance modes are reported.
View Article and Find Full Text PDFThe design, realization, and performance analysis of an octupole electrode pattern configuration intended for the optimization of the charge collection efficiency in quartz tuning forks (QTFs) vibrating at the first overtone in-plane flexural mode is reported. Two QTFs having the same geometry, but differing in the electrode pattern deposited on the QTF prongs, have been realized in order to study the influence of the electrode pattern on the resonance quality factor and electrical resistance. A standard quadrupole pattern (optimized for the fundamental mode) and an octupole electrode layout have been implemented.
View Article and Find Full Text PDF