The cereal endosperm is a complex structure comprising distinct cell types, characterized by specialized organelles for the accumulation of storage proteins. Protein trafficking in these cells is complicated by the presence of several different storage organelles including protein bodies (PBs) derived from the endoplasmic reticulum (ER) and dynamic protein storage vacuoles (PSVs). In addition, trafficking may follow a number of different routes depending on developmental stage, showing that the endomembrane system is capable of massive reorganization.
View Article and Find Full Text PDFRoots are the hidden parts of plants, anchoring their above-ground counterparts in the soil. They are responsible for water and nutrient uptake and for interacting with biotic and abiotic factors in the soil. The root system architecture (RSA) and its plasticity are crucial for resource acquisition and consequently correlate with plant performance while being highly dependent on the surrounding environment, such as soil properties and therefore environmental conditions.
View Article and Find Full Text PDFBackground: Birch pollen-related apple allergy is the most frequent IgE-mediated food allergy in Central-Northern Europe with Mal d 1 as major allergen. Its concentration in apples varies with the cultivar and storage time. Year-round appealing, hypoallergenic cultivars still are needed to satisfy the nutritional needs of affected individuals.
View Article and Find Full Text PDFCereal grain germination provides the basis for crop production and requires a tissue-specific interplay between the embryo and endosperm during heterotrophic germination involving signalling, protein secretion, and nutrient uptake until autotrophic growth is possible. High salt concentrations in soil are one of the most severe constraints limiting the germination of crop plants, affecting the metabolism and redox status within the tissues of germinating seed. However, little is known about the effect of salt on seed storage protein mobilization, the endomembrane system, and protein trafficking within and between these tissues.
View Article and Find Full Text PDFCereal endosperm is a short-lived tissue adapted for nutrient storage, containing specialized organelles, such as protein bodies (PBs) and protein storage vacuoles (PSVs), for the accumulation of storage proteins. During development, protein trafficking and storage require an extensive reorganization of the endomembrane system. Consequently, endomembrane-modifying proteins will influence the final grain quality and yield.
View Article and Find Full Text PDFThe multivesicular body (MVB) sorting pathway provides a mechanism for the delivery of cargo destined for degradation to the vacuole or lysosome. The endosomal sorting complex required for transport (ESCRT) is essential for the MVB sorting pathway by driving the cargo sorting to its destination. Many efforts in plant research have identified the ESCRT machinery and functionally characterised the first plant ESCRT proteins.
View Article and Find Full Text PDFAlthough many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in seeds resulted in the formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells.
View Article and Find Full Text PDFFront Plant Sci
September 2018
Barley () is one of the major food sources for humans and forage sources for animal livestock. The average grain protein content (GPC) of barley ranges between 8 and 12%. Barley hordeins (i.
View Article and Find Full Text PDF(barley) hordoindolines (HINs), HINa, HINb1, and HINb2, are orthologous proteins of wheat puroindolines (PINs) that are small, basic, cysteine-rich seed-specific proteins and responsible for grain hardness. Grain hardness is, next to its protein content, a major quality trait. In barley, is most highly expressed in the mid-stage developed endosperm and is associated with both major endosperm texture and grain hardness.
View Article and Find Full Text PDFThe cereal endosperm is a complex structure comprising distinct cell types, characterized by specialized organelles for the accumulation of storage proteins. Protein trafficking in these cells is complicated by the presence of several different storage organelles including protein bodies (PBs) derived from the endoplasmic reticulum (ER) and dynamic protein storage vacuoles (PSVs). In addition, trafficking may follow a number of different routes depending on developmental stage, showing that the endomembrane system is capable of massive reorganization.
View Article and Find Full Text PDFAntibody MC10E7 is one of a small number of monoclonal antibodies that bind specifically to [Arg4]-microcystins, and it can be used to survey natural water sources and food samples for algal toxin contamination. However, the development of sensitive immunoassays in different test formats, particularly user-friendly tests for on-site analysis, requires a sensitive but also cost-effective antibody. The original version of MC10E7 was derived from a murine hybridoma, but we determined the sequence of the variable regions using the peptide mass-assisted cloning strategy and expressed a scFv (single-chain variable fragment) format of this antibody in yeast and a chimeric full-size version in leaves of Nicotiana tabacum and Nicotiana benthamiana to facilitate inexpensive and scalable production.
View Article and Find Full Text PDFCereal endosperm is a highly differentiated tissue containing specialized organelles for the accumulation of storage proteins, which are ultimately deposited either within protein bodies derived from the endoplasmic reticulum, or in protein storage vacuoles (PSVs). During seed maturation endosperm cells undergo a rapid sequence of developmental changes, including extensive reorganization and rearrangement of the endomembrane system and protein transport via several developmentally regulated trafficking routes. Storage organelles have been characterized in great detail by the histochemical analysis of fixed immature tissue samples.
View Article and Find Full Text PDFCereal endosperm is a highly differentiated tissue containing specialized organelles for the accumulation of storage proteins. The endosperm of barley contains hordeins, which are ultimately deposited within protein storage vacuoles (PSVs). These organelles have been characterized predominantly by the histochemical analysis of fixed immature tissue samples.
View Article and Find Full Text PDFThe germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs) in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination.
View Article and Find Full Text PDFThe endosomal sorting complexes required for transport (ESCRT) guides transmembrane proteins to domains that bud away from the cytoplasm. The ESCRT machinery consists of four complexes. ESCRT complexes 0-II are important for cargo recognition and concentration via ubiquitin binding.
View Article and Find Full Text PDFSeed storage proteins (SSPs) have been studied for more than 250 years because of their nutritional value and their impact on the use of grain in food processing. More recently, the use of seeds for the production of recombinant proteins has rekindled interest in the behavior of SSPs and the question how they are able to accumulate as stable storage reserves. Seed cells produce vast amounts of SSPs with different subcellular destinations creating an enormous logistic challenge for the endomembrane system.
View Article and Find Full Text PDF