Publications by authors named "Verena Benz"

Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification.

View Article and Find Full Text PDF

The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa.

View Article and Find Full Text PDF
Article Synopsis
  • Estrogen receptor alpha (ERα) plays a key role in regulating metabolism in obesity, and this study explores its importance in female mice with specific ERα gene alterations during a high-fat diet.
  • The research found that while high-fat diet did not impact weight or glucose metabolism in these altered mice, it significantly increased their death rate due to severe uterine infections linked to changes in gut bacteria.
  • A notable reduction in protective M2-macrophages was observed in these mice, alongside increased estradiol levels, suggesting a complex interaction between dietary fatty acids and ERα signaling that impairs the body's anti-microbial response.
View Article and Find Full Text PDF

Pharmacological blockade of mineralocorticoid receptors (MR) is known as an efficacious therapy in chronic heart failure. Therapy with steroidal MR antagonists such as spironolactone or eplerenone (EPL) is often limited because of side effects. Recently, a new highly selective and potent, nonsteroidal MR antagonist, finerenone (FIN), has been developed.

View Article and Find Full Text PDF

Endurance exercise training induces substantial adaptive cardiac modifications such as left ventricular hypertrophy (LVH). Simultaneously to the development of LVH, adipose tissue (AT) lipolysis becomes elevated upon endurance training to cope with enhanced energy demands. In this study, we investigated the impact of adipose tissue lipolysis on the development of exercise-induced cardiac hypertrophy.

View Article and Find Full Text PDF

In the present study we investigated the influence of sex difference on the development of left ventricular hypertrophy (LVH) during obesity. Male and female C57BL/6J mice were fed for 15 and 25 wk with a high-fat diet (HFD) or low-fat control diet (LFD). Analysis of body composition, monitoring of body weight (BW), and echocardiographic analysis were performed, as well as analysis of expression of different adipocytokines in epicardial adipose tissue.

View Article and Find Full Text PDF

The influence of sex on the development of obesity, Type 2 Diabetes Mellitus (T2DM), and dyslipidemia is well documented, although the molecular mechanism underlying those differences reminds elusive. Ligands of peroxisome proliferator-activated receptors (PPARs) are used as oral antidiabetics (PPARgamma agonists: thiazolidinediones, TZDs), or for the treatment of dyslipidemia and cardiovascular diseases, due to their lipid-lowering properties (PPARalpha agonists: fibrates), as PPARs control transcription of a set of genes involved in the regulation of lipid and carbohydrate metabolism. Given a high prevalence of those metabolic disorders, and thus a broad use of PPAR agonists, the present review will discuss distinct aspects of sex-specific differences in antiobesity treatment using those groups of PPAR ligands.

View Article and Find Full Text PDF

Nob3 is a major obesity quantitative trait locus (QTL) identified in an intercross of New Zealand Obese (NZO) mice with C57BL/6J (B6), and by introgression of its 38 Mbp peak region into B6 (B6.NZO-Nob3.38).

View Article and Find Full Text PDF

Background: Successful reduction of body weight (BW) is often followed by recidivism to obesity. BW-changes including BW-loss and -regain is associated with marked alterations in energy expenditure (EE) and adipose tissue (AT) metabolism. Since these processes are sex-specifically controlled, we investigated sexual dimorphisms in metabolic processes during BW-dynamics (gain-loss-regain).

View Article and Find Full Text PDF

In the current study, we investigated the importance of histone deacetylase (HDAC)6 for glucocorticoid receptor-mediated effects on glucose metabolism and its potential as a therapeutic target for the prevention of glucocorticoid-induced diabetes. Dexamethasone-induced hepatic glucose output and glucocorticoid receptor translocation were analyzed in wild-type (wt) and HDAC6-deficient (HDAC6KO) mice. The effect of the specific HDAC6 inhibitor tubacin was analyzed in vitro.

View Article and Find Full Text PDF

Rationale: The nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of gene transcription in vascular cells and mediates the vascular protection observed with antidiabetic glitazones.

Objective: To determine the molecular mechanism of ligand-dependent transrepression in vascular smooth muscle cells and their impact on the vascular protective actions of PPARγ.

Methods And Results: Here, we report a molecular pathway in vascular smooth muscle cells by which ligand-activated PPARγ represses transcriptional activation of the matrix-degrading matrix metalloproteinase-9 (MMP-9) gene, a crucial mediator of vascular injury.

View Article and Find Full Text PDF

Exercise-induced cardiac hypertrophy has been recently identified to be regulated in a sex-specific manner. In parallel, women exhibit enhanced exercise-mediated lipolysis compared with men, which might be linked to cardiac responses. The aim of the present study was to assess if previously reported sex-dependent differences in the cardiac hypertrophic response during exercise are associated with differences in cardiac energy substrate availability/utilization.

View Article and Find Full Text PDF