Publications by authors named "Veremeĭchik G"

Calcium-dependent protein kinases (CDPKs) are very effective calcium signal decoders due to their unique structure, which mediates substrate-specific [Ca] signalling through phosphorylation. However, Ca-dependence makes it challenging to study CDPKs. This work focused on the effects of the overexpression of native and modified forms of the AtCPK1 gene on the tolerance of tobacco plants to heat and cold.

View Article and Find Full Text PDF

Long-term cultured calli may experience a biosynthetic shift due to the IAA-dependent expression of the rolA gene, which also affects ROS metabolism. The "hairy root" syndrome is caused by the root-inducing Ri-plasmid of Rhizobium rhizogenes, also known as Agrobacterium rhizogenes. The Ri-plasmid contains genes known as rol genes or root oncogenic loci, which promote root development.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) are one of the main Ca decoders in plants. Among them, is one of the most studied CDPK genes as a positive regulator of plant responses to biotic and abiotic stress. The mutated form of , in which the autoinhibitory domain is inactivated (), provides constitutive kinase activity by mimicking a stress-induced increase in the Ca flux.

View Article and Find Full Text PDF

Gene transfer from Agrobacterium to plants is the best studied example of horizontal gene transfer (HGT) between prokaryotes and eukaryotes. The rol genes of A. rhizogenes (Rhizobium rhizogenes) provide uncontrolled root growth, or "hairy root" syndrome, the main diagnostic feature.

View Article and Find Full Text PDF

The biological function of the agrobacterial oncogene rolA is very poorly understood compared to other components of the mechanism of horizontal gene transfer during agrobacterial colonization of plants. Research groups around the world have worked on this problem, and available information is reviewed in this review, but other rol oncogenes have been studied much more thoroughly. Having one unexplored element makes it impossible to form a complete picture.

View Article and Find Full Text PDF

The E3 ubiquitin-protein ligase HOS1 is an important integrator of temperature information and developmental processes. HOS1 is a negative regulator of plant cold tolerance, and silencing leads to increased cold tolerance. In the present work, we studied ROS levels in plants, in which the gene was silenced by disruption of the open reading frame via CRISPR/Cas9 technology.

View Article and Find Full Text PDF

Eruca sativa (arugula) is a food crop containing valuable bioactive flavonoids. Plants growing with monochrome light-emitting diodes (LED) and "binary" light sources, including red/blue (RB), were tested using HPLC-DAD-ESI-MS/MS. Most artificial lighting options with a high intensity of 1000 μmol ms (except for warm white light) resulted in an almost 20-fold increase in flavonol productivity.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) regulate plant development and stress responses. However, the interaction of these protein kinases with the abscisic acid (ABA) stress hormone signalling system has not been studied in detail. In , AtCPK1 plays an important role in the acclimation of plants to environmental stresses.

View Article and Find Full Text PDF

Increased flavonol accumulation and enhanced drought tolerance in A4-rolB-overexpressing plants can be explained by the cooperative action of the SA and ROS signalling pathways. Clarification of function of the A4-rolB plast gene from pRiA4 of Rhizobium rhizogenes will allow a better understanding of the biological principles of the natural transformation process and its use as a tool for plant bioengineering. In the present study, we investigated whether the overexpression of A4-rolB gene could regulate two important processes, flavonoid biosynthesis and drought tolerance.

View Article and Find Full Text PDF

Indole alkaloid camalexin has potential medicinal properties such as suppressing the viability of leukemic but not normal cells. Camalexin is not produced in plants and an external factor is required to activate its biosynthesis. In this work, we stimulated camalexin biosynthesis in Arabidopsis calli by blocking one of repressors of the jasmonate pathway, the jasmonate ZIM-domain protein 1 (JAZ1) by using amiRNA targeting JAZ1 gene transcripts.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) are Ca decoders in plants. AtCPK1 is a positive regulator in the plant response to biotic and abiotic stress. Inactivation of the autoinhibitory domain of AtCPK1 in the mutated form KJM23 provides constitutive activity of the kinase.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) are essential regulators of plant growth and development, biotic and abiotic stress responses. Inactivation of the auto-inhibitory domain (AID) of CDPKs provides the constitutive activity. This study investigated the effect of overexpressed native and constitutive active (AtCPK1-Ca) forms of the AtCPK1 gene on abiotic stress tolerance and the ROS/redox system in Rubia cordifolia transgenic callus lines.

View Article and Find Full Text PDF

The cultivation of soybean plants is one of the most important crop production sectors in the world. Isoflavones are an important defence against pathogens in soybeans. The aim of the present study was to analyse isoflavone biosynthesis in wild and cultivated soybeans grown in the field conditions in an unfavourable climate.

View Article and Find Full Text PDF

The RolA protein belongs to the RolB class of plant T-DNA oncogenes, and shares structural similarity with the papilloma virus E2 DNA-binding domain. It has potentially as an inducer of plant secondary metabolism, although its role in biotechnology has yet to be realised. In this investigation, a Rubia cordifolia callus culture transformed with the rolA plant oncogene for more than 10 years was analysed.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) represent a class within a multigene family that plays an important role in biotic and abiotic plant stress responses and is involved in the regulation of secondary metabolite biosynthesis. Our previous study showed that overexpression of the mutant constitutively active Ca independent form of the AtCPK1 gene (AtCPK1-Ca) significantly increased the biosynthesis of anthraquinones and stilbenes in Rubia cordifolia L. and Vitis amurensis Rupr.

View Article and Find Full Text PDF

The rolB plant oncogene of Agrobacterium rhizogenes perturbs many biochemical processes in transformed plant cells, thereby causing their neoplastic reprogramming. The oncogene renders the cells more tolerant to environmental stresses and herbicides and inhibits ROS elevation and programmed cell death. In the present work, we performed a proteomic analysis of Arabidopsis thaliana rolB-expressing callus line AtB-2, which represents a line with moderate expression of the oncogene.

View Article and Find Full Text PDF

In the present investigation, transgenic tobacco callus cultures and plants overexpressing the silicatein gene LoSilA1 from marine sponge Latrunculia oparinae were obtained and their bioreduction behaviour for the synthesis of silver nanoparticles (AgNPs) was studied. Synthesized nanoparticles were characterized using UV-visible spectroscopy, Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic flame electron microscopy (AFM) and nanoparticle tracking analysis (NTA). Our measurements showed that the reduction of silver nitrate produced spherical AgNPs with diameters in the range of 12-80 nm.

View Article and Find Full Text PDF

Background: For many years, anticancer polyphenols have attracted significant attention as substances that prevent tumor growth and progression. These compounds are simple phenolic acids, complex phenolic acids, such as caffeoylquinic acids, rosmarinic acid and its derivatives, stilbenes, flavones, isoflavones, and anthocyanins. Some compounds, such as tea and coffee polyphenols, can be produced in large quantities by traditional methods, while many others cannot.

View Article and Find Full Text PDF

Overexpression of both native and mutant forms of AtCPK1 in Rubia cordifolia cells increased anthraquinone production and transcript abundance of the RcIPPI, RcOSBL, RcOSBS , and RcICS genes to different extents. Calcium-dependent protein kinases (CDPKs) are involved in various cell processes and are regulated by a calcium signal system. CDPKs also function in plant defense against stress factors such as pathogens, temperature, and salinity.

View Article and Find Full Text PDF

Expression of rol genes from Agrobacterium rhizogenes induces reprogramming of transformed plant cells and provokes pleiotropic effects on primary and secondary metabolism. We have previously established that the rolB and rolC genes impair reactive oxygen species (ROS) generation in transformed cells of Rubia cordifolia and Arabidopsis thaliana. In the present investigation, we tested whether this effect is associated with changes in the expression levels of NADPH oxidases, which are considered to be the primary source of ROS during plant-microbe interactions.

View Article and Find Full Text PDF

It is known that the rolB gene of Agrobacterium rhizogenes increases the production of secondary metabolites in transformed plant cells, but its mechanism of action remains unclear. In this report, we demonstrate that rolB expression in Arabidopsis thaliana calli led to the activation of most genes encoding secondary metabolism-specific MYB and bHLH transcription factors (TFs), such as MYB11, MYB12, MYB28, MYB76, MYB34, MYB51, MYB122, TT2 and TT8. Accordingly, a higher transcript abundance of main biosynthetic genes related to these factors was detected.

View Article and Find Full Text PDF

The cDNA fragment encoding the catalytic domain of the new silicatein-like cathepsin enzyme LoCath was expressed in a strain Top10 of Escherichia coli, extracted and purified via nickel-affinity chromatography. Recombinant enzyme performed silica-polymerizing activity when mixed with water-soluble silica precursor-tetrakis-(2-hydroxyethyl)-orthosilicate. Scanning electron microscopy revealed hexagonal, octahedral and β-tridimit crystals.

View Article and Find Full Text PDF

The process of silica formation in marine sponges is thought to be mediated by a family of catalytically active structure-directing enzymes called silicateins. It has been demonstrated in biomimicking syntheses that silicateins facilitated the formation of amorphous SiO2. Here, we present evidence that the silicatein LoSiLA1 from the marine sponge Latrunculia oparinae catalyzes the in vitro synthesis of hexa-tetrahedral SiO2 crystals of 200–300 nm.

View Article and Find Full Text PDF

The aim of this research is to investigate the effects of the Agrobacterium rhizogenes rol genes on the composition of cell-wall polysaccharides and glycanase activity in the campion callus. The expression of the rolC gene reduces the yield of campion pectin, while the expression of the rolB or rolC gene inhibits the volumetric production of both pectin and intracellular arabinogalactan. The rol genes are involved in regulating the activity of glycanases and esterases, thereby contributing to the modification of polysaccharide structures, their molecular weight (Mw) and the degree of pectin methyl esterification (DE).

View Article and Find Full Text PDF

The rolB gene of Agrobacterium rhizogenes renders cells more tolerant of environmental stresses and increases their defense potential. However, these effects, coupled with the developmental abnormalities caused by rolB, have not yet been explained. In rolB-transformed Arabidopsis thaliana cells, we detected a 2.

View Article and Find Full Text PDF