Publications by authors named "Vered Gazit"

Article Synopsis
  • Short bowel syndrome (SBS) is a serious condition that can make people very sick, but adjusting how the intestines work can help improve health.
  • Researchers studied tiny samples of human intestines from mice with SBS to find out which genes are involved in how the intestines adapt.
  • They discovered that zinc can help SBS mice survive better and gain weight, and they think zinc could be a possible treatment for people with SBS too.
View Article and Find Full Text PDF

Background & Aims: Human sporadic colorectal cancer (CRC) results from a multistep pathway with sequential acquisition of specific genetic mutations in the colorectal epithelium. Modeling CRC in vivo is critical for understanding the tumor microenvironment. To accurately recapitulate human CRC pathogenesis, mouse models must include these multi-step genetic abnormalities.

View Article and Find Full Text PDF

RNA-binding protein 47 (RBM47) is required for embryonic endoderm development, but a role in adult intestine is unknown. We studied intestine-specific Rbm47-knockout mice (Rbm47-IKO) following intestinal injury and made crosses into ApcMin/+ mice to examine alterations in intestinal proliferation, response to injury, and tumorigenesis. We also interrogated human colorectal polyps and colon carcinoma tissue.

View Article and Find Full Text PDF

Loss of functional small bowel surface area causes short bowel syndrome (SBS), intestinal failure, and parenteral nutrition (PN) dependence. The gut adaptive response following resection may be difficult to predict, and it may take up to 2 yr to determine which patients will wean from PN. Here, we examined features of gut microbiota and bile acid (BA) metabolism in determining adaptation and ability to wean from PN.

View Article and Find Full Text PDF

Loss of functional small bowel surface area following surgical resection for disorders such as Crohn's disease, intestinal ischemic injury, radiation enteritis, and in children, necrotizing enterocolitis, atresia, and gastroschisis, may result in short bowel syndrome, with attendant high morbidity, mortality, and health care costs in the United States. Following resection, the remaining small bowel epithelium mounts an adaptive response, resulting in increased crypt cell proliferation, increased villus height, increased crypt depth, and enhanced nutrient and electrolyte absorption. Although these morphologic and functional changes are well described in animal models, the adaptive response in humans is less well understood.

View Article and Find Full Text PDF

The development and physiologic role of small intestine (SI) vasculature is poorly studied. This is partly due to a lack of targetable, organ-specific markers for in vivo studies of two critical tissue components: endothelium and stroma. This challenge is exacerbated by limitations of traditional cell culture techniques, which fail to recapitulate mechanobiologic stimuli known to affect vessel development.

View Article and Find Full Text PDF

Stem cell therapy is a potential therapeutic approach for disorders characterized by intestinal injury or loss of functional surface area. Stem cell function and proliferation are mediated by the stem cell niche. Stromal cells such as intestinal subepithelial myofibroblasts (ISEMFs) are important but poorly studied components of the stem cell niche.

View Article and Find Full Text PDF

The two splice variants of human glucose transporter 9 (hGLUT9) are targeted to different polarized membranes. hGLUT9a traffics to the basolateral membrane, whereas hGLUT9b traffics to the apical region. This study examines the sorting mechanism of these variants, which differ only in their N-terminal domain.

View Article and Find Full Text PDF

Energy metabolism in RBCs is characterized by O2-responsive variations in flux through the Embden Meyerhof pathway (EMP) or the hexose monophosphate pathway (HMP). Therefore, the generation of ATP, NADH, and 2,3-DPG (EMP) or NADPH (HMP) shift with RBC O2 content because of competition between deoxyhemoglobin and key EMP enzymes for binding to the cytoplasmic domain of the Band 3 membrane protein (cdB3). Enzyme inactivation by cdB3 sequestration in oxygenated RBCs favors HMP flux and NADPH generation (maximizing glutathione-based antioxidant systems).

View Article and Find Full Text PDF

Unlabelled: Mice subjected to partial hepatectomy (PH) develop hypoglycemia, followed by increased systemic lipolysis and hepatic fat accumulation, prior to onset of hepatocellular proliferation. Strategies that disrupt these metabolic events inhibit regeneration. These observations suggest that alterations in metabolism in response to hepatic insufficiency promote liver regeneration.

View Article and Find Full Text PDF

The relationship between liver and body mass is exemplified by the precision with which the liver:body mass ratio is restored after partial hepatic resection. Nevertheless, the compartments, against which liver mass is so exquisitely regulated, currently remain undefined. In the studies reported here, we investigated the role of skeletal muscle mass in the regulation of liver:body mass ratio and liver regeneration via the analysis of myostatin-null mice, in which skeletal muscle is hypertrophied.

View Article and Find Full Text PDF

Unlabelled: We previously reported that mice subjected to partial hepatectomy exhibit rapid development of hypoglycemia followed by transient accumulation of fat in the early regenerating liver. We also showed that disrupting these metabolic alterations results in impaired liver regeneration. The studies reported here were undertaken to further characterize and investigate the functional importance of changes in systemic adipose metabolism during normal liver regeneration.

View Article and Find Full Text PDF

Unlabelled: The inhibitory effect of dextrose supplementation on liver regeneration was first described more than 4 decades ago. Nevertheless, the molecular mechanisms responsible for this observation have not been elucidated. We investigated these mechanisms using the partial hepatectomy model in mice given standard or 10% dextrose (D10)-supplemented drinking water.

View Article and Find Full Text PDF

Background: Insulin-dependent diabetes mellitus is dominated by a Th1 response whereas atopic diseases such as asthma, eczema and allergic rhinitis are characterized by a Th2 response. Because it is known that Th1 and Th2 cells reciprocally counteract each other, it can be speculated that the prevalence of Th2-mediated diseases is lower in patients with a Th1-mediated disease.

Objectives: To compare the prevalence of atopic diseases among children with IDDM and age-matched controls.

View Article and Find Full Text PDF

Mice with inactivation of the Tuberous sclerosis complex-1 (Tsc1) gene in glia (Tsc1 GFAP CKO mice) have deficient astrocyte glutamate transporters and develop seizures, suggesting that abnormal glutamate homeostasis contributes to neurological abnormalities in these mice. We examined the hypothesis that Tsc1 GFAP CKO mice have elevated extracellular brain glutamate levels that may cause neuronal death, abnormal glutamatergic synaptic function, and associated impairments in behavioral learning. In vivo microdialysis documented elevated glutamate levels in hippocampi of Tsc1 GFAP CKO mice and several cell death assays demonstrated neuronal death in hippocampus and neocortex.

View Article and Find Full Text PDF

Interpretation of the cellular and molecular pathogenic basis of post-minimal traumatic brain injury is a significant clinical and scientific problem, especially due to the high prevalence of motor vehicle--and other accidents. Pathogenetic brain mechanisms following traumatic impact are usually investigated by using models of severe or moderate trauma. Apoptotic neuronal degeneration after notable brain trauma is a well-known phenomenon, but the source of its activation is not clear, especially after mild, subclinical brain trauma.

View Article and Find Full Text PDF

Unlabelled: The activity of N-methyl-D-aspartate (NMDA) receptors is critical for neuronal survival in the immature brain. Studies have reported that chronic blockage of these receptors mediates apoptosis in neonatal animals. We investigated the apoptotic effect of a clinically relevant single dose of ketamine, an NMDA receptor antagonist, in the brain of neonatal mice.

View Article and Find Full Text PDF

Mechanisms underlying cognitive dysfunction in young diabetic children are poorly understood, and may include synaptic dysfunction from insulin-induced hypoglycemia. We developed a model of repetitive insulin-induced hypoglycemia in young rats and examined hippocampal long-term potentiation, an electrophysiologic assay of synaptic plasticity, 3-5 d after the last hypoglycemic event. Three hypoglycemic events between postnatal d 21-25 produced modest cortical (17 +/- 2.

View Article and Find Full Text PDF

Previous investigation demonstrated the potential of beta-phenylpyruvate at high concentration to cause hypoglycemia in mice totally deprived of insulin. For further elucidation of the glucose-lowering mechanism, glucose uptake, and quantity of glucose transporters (GLUT1 and GLUT4) in mouse soleus muscle and C2C12 muscle cell lines were investigated following incubation with beta-phenylpyruvate in various concentrations. A marked enhancement of glucose uptake was demonstrated that peaked at 0.

View Article and Find Full Text PDF

Previous investigation demonstrated the potential of L-cysteine (L-Cys) at high concentrations to cause hypoglycemia in mice totally deprived of insulin. For further elucidation of the glucose-lowering mechanism, glucose uptake and quantity of glucose transporters (GLUTs 3 and 4) in mouse soleus muscle and C2C12 muscle cells, as well as in human SH-SY5Y neuroblastoma cells, were investigated. A marked enhancement of glucose uptake was demonstrated, peaking at 5.

View Article and Find Full Text PDF

We investigated whether structural central neural damage and long-term neurobehavioral deficits after L-cysteine (L-Cys) administration in mice is caused by hypoglycemia. Neonatal ICR mice were injected subcutaneously with L-Cys (0.5-1.

View Article and Find Full Text PDF

Administration of beta-phenylpyruvate at high concentrations reduces blood glucose levels and causes neurophysiological deterioration in insulin-deprived mice. We investigated whether beta-phenylpyruvate administration would cause long-term neurobehavioral and structural central neural damage in mice. Neonatal ICR mice were injected with beta-phenylpyruvate (0.

View Article and Find Full Text PDF

Following beta-phenylpyruvate injection, mice developed hypoglycemia clinically manifested as tachypnea, tremor, convulsions and death. To further investigate, neonatal mice were injected with beta-phenylpyruvate and their blood glucose determined and brain histology assessed. beta-Phenylpyruvate-injected mice exhibited higher mortality and neurophysiological changes as compared with controls, although without evidence of neural cell death.

View Article and Find Full Text PDF