In both children and adults, magnetic resonance imaging of the brain in cases of multiple sclerosis (MS) has typical indications, where one of the key points for differentiating between demyelinating processes and place-taking processes is the fact that most of the lesions that appear in multiple sclerosis do not cause a mass effect or much edema around them. There are several uncommon subtypes of multiple sclerosis that can appear specifically in adolescents, presenting with a stormy clinical course and accompanied by brain lesions that resemble space-occupying lesions. These include Marburg disease, Balò's concentric sclerosis, and tumefactive MS.
View Article and Find Full Text PDFPurpose: Laquinimod is an orally dosed immuno-modulator currently under development for Huntington's disease (HD). Preclinical findings suggest potential teratogenicity of laquinimod, thus the reproductive ability of females with HD treated with laquinimod needs to be closely managed. Because combined oral contraceptives (COC) are often used in this context, the pharmacokinetics of COC containing ethinylestradiol (EE) and levonorgestrel (LNG) in combination with laquinimod (0.
View Article and Find Full Text PDFNeuroprotection is a therapeutic approach for the management of neurodegenerative diseases. Experimental thiamine deficiency (TD) in rats provides a model for selective neurodegeneration accompanied by chronic oxidative deficits. Rats exhibit neurological and cognitive impairments, which can be partially reversed by thiamine administration, enabling the study of mechanisms of neurodegeneration as well as neuroprotection.
View Article and Find Full Text PDFSelective neurodegeneration accompanied by mitochondrial dysfunction characterizes neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Thiamine deficiency (TD) in rats is a model for the study of cellular and molecular mechanisms that lead to selective neuronal loss caused by chronic oxidative deficits. Neurodegeneration in TD-rats develops over a period of 12 to 14 days and can be partially reversed by thiamine administration.
View Article and Find Full Text PDFThiamine deficiency (TD) in rats is a model of chronic impairment of oxidative metabolism leading to neuronal loss. TD rats exhibit neuropathological, behavioral and cognitive abnormalities. The aim of this study was to use this syndrome to assess the neuroprotective potential of drugs in a whole animal model.
View Article and Find Full Text PDF