IEEE Trans Ultrason Ferroelectr Freq Control
October 2012
Images produced with an intravascular ultrasound system (IVUS) can be distorted because of uncertainty in the instantaneous angular position of a rotating ultrasonic transducer. A rotary encoder placed in proximity to the transducer is required to detect the problem; however, size constraints make a conventional electromechanical or optomechanical encoder difficult to implement. Measurements that test the feasibility of a software-derived encoder, based of the rate of decorrelation of ultrasonic RF lines with angle, are reported.
View Article and Find Full Text PDFThe CellKey (MDS Sciex, South San Francisco, CA) system enables comprehensive pharmacological evaluation of cell surface receptors, including G-protein coupled receptors (GPCRs) and tyrosine kinase receptors, using adherent and suspension cell lines and primary cells. A unique application enabled by the ability of the CellKey system to reliably quantify activation of endogenous receptors is receptor panning. This application allows investigators to easily screen disease-relevant cell types for functionally active target receptors by treating cells with a panel of receptor-specific ligands.
View Article and Find Full Text PDFMeasurements of the frequency dependence of ultrasonic backscatter are presented for specific angles of insonification for regions of infarcted and noninfarcted human myocardium. A 5-MHz transducer was used to insonify cylindrical cores taken from 7 noninfarcted regions and 12 infarcted regions of the left ventricular free wall of 6 formalin-fixed human hearts explanted because of ischemic cardiomyopathy. The dependence of apparent (uncompensated for diffraction effects and attenuation) backscatter on frequency was approximated by a power-law dependence, magnitude of B(f)2 = afn.
View Article and Find Full Text PDFClinical implementation of quantitative ultrasonic tissue characterization is likely to require imaging the heart with sound propagating at varying angles relative to the fibers of the heart. Under these circumstances, the variation of the ultrasonic properties of myocardium with the angle of propagation relative to the myofibers may represent a significant source of potential misinterpretation. In the present study, the systematic approach of assessing the impact of anisotropy on quantitative myocardial tissue characterization is extended by reporting results of a recent in vitro study to measure the anisotropy of the slope of ultrasonic attenuation in specimens of formalin fixed human myocardium.
View Article and Find Full Text PDFRecent studies from our laboratory have detailed the anisotropy of velocity of quasilongitudinal-mode ultrasonic waves through formalin fixed samples of normal human myocardium and bovine Achilles tendon. Results of these studies were used to determine the elastic stiffness coefficients c33, corresponding to the propagation of longitudinal-mode waves parallel to the fiber axis of the tissue, and c11, corresponding to the propagation of longitudinal-mode waves perpendicular to the fiber axis. For a tissue possessing a unidirectional arrangement of fibers with a random transverse distribution, three additional coefficients, c13, c44, and c12, are needed to describe its linear mechanical properties completely.
View Article and Find Full Text PDFThe content and organization of collagen in the cardiac interstitium may represent significant determinants of the ultrasonic scattering properties of myocardium. This study was designed to investigate the anisotropic backscattering properties of a fibrous soft tissue exhibiting an ordered arrangement of fibers similar to myocardium, but possessing a substantially greater content of collagen. Human Achilles tendon was chosen for this study because it possesses a simple unidirectional arrangement of fibers and a high content of collagen compared to normal myocardium.
View Article and Find Full Text PDFThe widespread use of echocardiography has generated considerable interest in the ultrasonic properties of myocardial collagen. This study was designed to investigate the effect of collagen on the propagation of ultrasound by measuring the anisotropy of ultrasonic velocity through formalin fixed specimens of bovine Achilles tendon. Tendon was chosen for this study because it possesses a high content of collagen and a well-defined unidirectional arrangement of fibers.
View Article and Find Full Text PDFJ Acoust Soc Am
December 1992
Measurements of ultrasonic quasilongitudinal velocity were made in the muscle fiber plane of excised human myocardium. Multiple adjacent planes across the left ventricular wall were interrogated to assess the transmural dependence of velocity. For each measurement plane, data were obtained in 2-deg increments through the full 360 deg relative to the myofibers.
View Article and Find Full Text PDFBackground: Noninvasive approaches to the evaluation of idiopathic cardiomyopathy are limited. Recent work from our laboratory has used quantitative ultrasound to define the three-dimensional structure of normal human myocardium and the myocardial remodeling associated with infarction. Our goal was to define the role of ultrasonic tissue characterization for detection of specific alterations in the three-dimensional transmural architecture of idiopathic dilated cardiomyopathy.
View Article and Find Full Text PDFIt has been reported previously that acute and mature myocardial infarction in dogs can be differentiated in vitro and in vivo by ultrasonic tissue characterization based on measurement of the frequency dependence of ultrasonic backscatter. To characterize human infarction with an index of the frequency dependence of backscatter that could be obtained in patients, cylindrical biopsy specimens from 7 normal regions and 12 regions of infarction of 6 fixed, explanted human hearts in 2-deg steps around their entire circumference with a 5-MHz broadband transducer were insonified. One to six consecutive transmural levels were studied for each specimen.
View Article and Find Full Text PDFBackground: Remodeling of myocardial tissue after infarction may culminate in the development of either a well-healed scar or a thin, expanded heart wall segment that predisposes to ventricular aneurysm formation, congestive heart failure, or ventricular tachycardia. The three-dimensional architecture of mature human infarct tissue and the mechanisms that determine it have not been elucidated. We have previously shown that quantitative ultrasonic backscatter can be used to define the transmural organization of human myofibers in the normal ventricular wall by measuring the dependence of backscatter on the angle of insonification, or ultrasonic anisotropy.
View Article and Find Full Text PDFNormal human left ventricular architecture comprises a highly aligned array of cardiac myofibers whose orientation depends on transmural location. This study was designed to determine whether measurement of integrated backscatter could be used detect the progressive transmural shift of myofiber alignment that occurs from epicardium to endocardium in human ventricular wall segments. Integrated backscatter was measured at 32 transmural levels in seven cylindrical biopsy specimens (1.
View Article and Find Full Text PDF