Publications by authors named "Vera Smolyakova"

The dose proportionality and bioavailability of the potential anti-inflammatory and neuroprotective JNK inhibitor 11-indeno[1,2-]quinoxalin-11-one oxime (IQ-1) were evaluated by comparing pharmacokinetic parameters after single oral (25, 50 and 100 mg/kg) and intravenous (1 mg/kg) IQ-1 administration in rats.IQ-1 and its major metabolite ketone 11-indeno[1,2-]quinoxalin-11-one (IQ-18) were isolated from plasma samples by liquid-liquid extraction. IQ-1 (E-isomer) and IQ-18 were simultaneously quantified in plasma by the validated method of liquid chromatography with triple quadrupole mass spectrometry (HPLC-MS/MS).

View Article and Find Full Text PDF

The activation of -Jun N-terminal kinase (JNK) plays an important role in stroke outcomes. Tryptanthrin-6-oxime (TRYP-Ox) is reported to have high affinity for JNK and anti-inflammatory activity and may be of interest as a promising neuroprotective agent. The aim of this study was to investigate the neuroprotective effects of TRYP-Ox in a rat model of transient focal cerebral ischemia (FCI), which involved intraluminal occlusion of the left middle cerebral artery (MCA) for 1 h.

View Article and Find Full Text PDF

Activation of c-Jun N-terminal kinases (JNKs) is involved in myocardial injury, left ventricular remodeling (LV), and heart failure (HF) after myocardial infarction (MI). The aim of this research was to evaluate the effects of a selective JNK inhibitor, 11-indeno [1,2-]quinoxalin-11-one oxime (IQ-1), on myocardial injury and acute myocardial ischemia/reperfusion (I/R) in adult male Wistar rats. Intraperitoneal administration of IQ-1 (25 mg/kg daily for 5 days) resulted in a significant decrease in myocardial infarct size on day 5 after MI.

View Article and Find Full Text PDF

The c-Jun -terminal kinases (JNKs) regulate many physiological processes, including inflammatory responses, morphogenesis, cell proliferation, differentiation, survival, and cell death. Therefore, JNKs represent attractive targets for therapeutic intervention. In an effort to develop improved JNK inhibitors, we synthesized the lithium salt of 11-indeno[1,2-]quinoxaline-11-one oxime () and evaluated its affinity for JNK and biological activity in vitro and in vivo.

View Article and Find Full Text PDF

(1) Background: Although myelin disruption is an integral part of ischemic brain injury, it is rarely the subject of research, particularly in animal models. This study assessed for the first time, myelin and oligodendrocyte loss in a three-vessel model of global cerebral ischemia (GCI), which causes hippocampal damage. In addition, we investigated the relationships between demyelination and changes in microglia and astrocytes, as well as oligodendrogenesis in the hippocampus; (2) Methods: Adult male Wistar rats ( = 15) underwent complete interruption of cerebral blood flow for 7 min by ligation of the major arteries supplying the brain or sham-operation.

View Article and Find Full Text PDF

A novel specific inhibitor of c-Jun N-terminal kinase, 11-indeno[1,2-]quinoxalin-11-one oxime sodium salt (IQ-1S), has a high affinity to JNK3 compared to JNK1/JNK2. The aim of this work was to study the mechanisms of neuroprotective activity of IQ-1S in the models of reversible focal cerebral ischemia (FCI) in Wistar rats. The animals were administered with an intraperitoneal injection of IQ-1S (5 and 25 mg/kg) or citicoline (500 mg/kg).

View Article and Find Full Text PDF

A selective serotonin reuptake inhibitor, fluoxetine, has recently attracted a significant interest as a neuroprotective therapeutic agent. There is substantial evidence of improved neurogenesis under fluoxetine treatment of brain ischemia in animal stroke models. We studied long-term effects of fluoxetine treatment on hippocampal neurogenesis, neuronal loss, inflammation, and functional recovery in a new model of global cerebral ischemia (GCI).

View Article and Find Full Text PDF

We developed an improved three-vessel occlusion model of global cerebral ischemia in rats. This method consists in cessation of cerebral blood flow by accessing a. carotis communis sinistra through the ventral surface of the neck as well as tr.

View Article and Find Full Text PDF

Background: Salidroside is a biologically active compound derived from Rhodiola rosea L. Studies showed that salidroside after i.v.

View Article and Find Full Text PDF

Objectives: To investigate the antiplatelet activity of alpha-lipoic acid (α-LA) and dihydroquercetin (DHQ).

Methods: Antiplatelet activity of the α-LA and DHQ was evaluated in rich platelet plasma of rat. The platelet aggregation was induced by adenosine diphosphate (ADP) in concentration of 4 × 10(-5) M.

View Article and Find Full Text PDF