DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism.
View Article and Find Full Text PDFRNA interference (RNAi) acts on long double-stranded RNAs (dsRNAs) in a variety of eukaryotes to generate small interfering RNAs that target homologous messenger RNA, resulting in their destruction. This process is widely used to 'knock-down' the expression of genes of interest to explore phenotypes. In plants, fission yeast, ciliates, flies and mammalian cells, short interfering RNAs (siRNAs) also induce DNA or chromatin modifications at the homologous genomic locus, which can result in transcriptional silencing or sequence elimination.
View Article and Find Full Text PDFRNA interference (RNAi) is widely used for knocking down expression of genes of interest and in systematic screens for desired phenotypes. In post-transcriptional gene silencing, double-stranded RNA triggers are processed to small interfering RNAs, which act to seek out and destroy homologous transcripts. A variety of organisms utilise the RNAi pathway to silence expression of potentially harmful endogenous mobile elements and to eliminate unnecessary sequences.
View Article and Find Full Text PDFReplication protein A (RPA) is a highly conserved single-stranded DNA-binding protein involved in DNA replication, recombination and repair. We show here that RPA is present at the telomeres of the budding yeast Saccharomyces cerevisiae, with a maximal association in S phase. A truncation of the N-terminal region of Rfa2p (associated with the rfa2Delta40 mutated allele) results in severe telomere shortening caused by a defect in the in vivo regulation of telomerase activity.
View Article and Find Full Text PDFThe expression of short hairpin RNAs in several organisms silences gene expression by targeted mRNA degradation. This RNA interference (RNAi) pathway can also affect the genome, as DNA methylation arises at loci homologous to the target RNA in plants. We demonstrate in fission yeast that expression of a synthetic hairpin RNA is sufficient to silence the homologous locus in trans and causes the assembly of a patch of silent Swi6 chromatin with cohesin.
View Article and Find Full Text PDFIn plants, animals and fungi, active centromeres are associated with arrays of repetitive DNA sequences. The outer repeats at fission yeast (Schizosaccharomyces pombe) centromeres are heterochromatic and are required for the assembly of an active centromere. Components of the RNA interference (RNAi) machinery process transcripts derived from these repeats and mediate the formation of silent chromatin.
View Article and Find Full Text PDFThe number of telomeric DNA repeats at chromosome ends is maintained around a mean value by a dynamic balance between elongation and shortening. In particular, proteins binding along the duplex part of telomeric DNA set the number of repeats by progressively limiting telomere growth. The paradigm of this counting mechanism is the Rap1 protein in Saccharomyces cerevisiae.
View Article and Find Full Text PDFWe have characterized spSet1p, the Schizosaccharomyces pombe ortholog of the budding yeast histone H3 methyltransferase Set1p. SpSet1p catalyzes methylation of H3 at K4, in vivo and in vitro. Deleting spset1 partially affects telomeric and centromeric silencing.
View Article and Find Full Text PDFReversible acetylation of histone tails plays an important role in chromatin remodelling and regulation of gene activity. While modification by histone acetyltransferase (HAT) is usually linked to transcriptional activation, we provide here evidence for HAT function in several types of epigenetic repression. Chameau (Chm), a new Drosophila member of the MYST HAT family, dominantly suppresses position effect variegation (PEV), is required for the maintenance of Hox gene silencing by Polycomb group (PcG) proteins, and can partially substitute for the MYST Sas2 HAT in yeast telomeric position effect (TPE).
View Article and Find Full Text PDF