HIV-1 recurrently targets active genes and integrates in the proximity of the nuclear pore compartment in CD4 T cells. However, the genomic features of these genes and the relevance of their transcriptional activity for HIV-1 integration have so far remained unclear. Here we show that recurrently targeted genes are proximal to super-enhancer genomic elements and that they cluster in specific spatial compartments of the T cell nucleus.
View Article and Find Full Text PDFIn response to DNA damage, transient repair compartments in the nucleus concentrate repair proteins and activate downstream signaling factors. In this issue of The EMBO Journal, Kilic et al show that DNA repair focal assemblies marked by accumulation of 53BP1 are phase separated liquid compartments. This liquid droplet-like behavior of 53BP1 compartments might help to coordinate local lesion recognition with global gene activation in response to DNA damage.
View Article and Find Full Text PDFHow spatial chromosome organization influences genome integrity is still poorly understood. Here, we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CCCTC-binding factor (CTCF) and cohesin-bound sites at the bases of chromatin loops, and their frequency positively correlates with transcriptional output and directionality.
View Article and Find Full Text PDFIllegitimate joining of chromosome breaks can lead to the formation of chromosome translocations, a catastrophic type of genome rearrangements that often plays key roles in tumorigenesis. Emerging evidence suggests that the mobility of broken DNA loci can be an important determinant in partner search and clustering of individual breaks, events that can influence translocation frequency. We summarize here the recent literature on the mechanisms that regulate chromatin movement, focusing on studies exploring the motion properties of double-strand breaks in the context of chromatin, the functional consequences for DNA repair, and the formation of chromosome fusions.
View Article and Find Full Text PDFColorectal cancer (CRC) is one of the most common tumor entities, which is causally linked to DNA repair defects and inflammatory bowel disease (IBD). Here, we studied the role of the DNA repair protein poly(ADP-ribose) polymerase-1 (PARP-1) in CRC. Tissue microarray analysis revealed PARP-1 overexpression in human CRC, correlating with disease progression.
View Article and Find Full Text PDF