Publications by authors named "Vera Meyer"

Background: Fungal-based composites have emerged as renewable, high-performance biomaterials that are produced on lignocellulosic residual streams from forestry and agriculture. Production at an industrial scale promises to revolutionize the world humans inhabit by generating sustainable, low emission, non-toxic and biodegradable construction, packaging, textile, and other materials. The polypore Fomes fomentarius is one of the basidiomycete species used for biomaterial production, yet nothing is known about the transcriptional basis of substrate decomposition, nutrient uptake, or fungal growth during composite formation.

View Article and Find Full Text PDF

Antifungal peptides are promising drug candidates to fight fungal infections in the clinics and agriculture. However, recent data suggest that antifungal peptides might also play a role within their own producing organism to survive nutrient limiting conditions. We have therefore studied the function of the antifungal AnAFP in in more detail.

View Article and Find Full Text PDF

Background: Recent advancements in the collaboration between two scientific disciplines-fungal biotechnology and materials sciences-underscore the potential of fungal mycelium as renewable resource for sustainable biomaterials that can be harnessed in different industries. As fungal mycelium can be biotechnologically obtained from different filamentous fungi and is as a material very versatile, respective research and commercial application should be thriving. However, some granted patents in the field of fungal mycelium-based materials have caused uncertainty in the community as to which subject matter is patent-protected and for how long the protection is expected to last.

View Article and Find Full Text PDF

Low-vacuum scanning electron microscopy (low-vacuum SEM) is widely used for different applications, such as the investigation of noncoated specimen or the observation of biological materials, which are not stable to high vacuum. In this study, the combination of mineral building materials (concrete or clay plaster) with a biological composite (fungal mycelium composite) by using low-vacuum SEM was investigated. Fungal biotechnology is increasingly gaining prominence in addressing the challenges of sustainability transformation.

View Article and Find Full Text PDF

Background: Members of the fungal kingdom are heterotrophic eukaryotes encased in a chitin containing cell wall. This polymer is vital for cell wall stiffness and, ultimately, cell shape. Most fungal genomes contain numerous putative chitin synthase encoding genes.

View Article and Find Full Text PDF

Background: To achieve climate neutrality, fundamentally new concepts of circularity need to be implemented by the building sector as it contributes to 40% of anthropogenic CO emission. Fungal biotechnology can make a significant contribution here and help eliminate fossil dependency for building material production. Recently, we have shown that the medicinal polypore Fomes fomentarius feeds well on renewable lignocellulosic biomass and produces composite materials that could potentially replace fossil fuel-based expanded polystyrene as insulation material.

View Article and Find Full Text PDF

, formerly known as , is used in industry to produce lignocellulolytic enzymes and heterologous proteins. However, the transcriptional network driving the expression of these proteins remains elusive. As a first step to systematically uncover this network, we investigated growth, protein secretion, and transcriptomic fingerprints of strains deficient in the cellulolytic transcriptional regulators Clr1, Clr2, and Clr4, respectively.

View Article and Find Full Text PDF

Protein adsorption plays a key role in membrane fouling in liquid processing, but the specific underlying molecular mechanisms of β-lactoglobulin adsorption on ceramic silica surfaces in premix membrane emulsification have not been investigated yet. In this study, we aimed to elucidate the β-lactoglobulin adsorption and its effect on the premix membrane emulsification of β-lactoglobulin-stabilized oil-in-water emulsions. In particular, the conformation, molecular interactions, layer thickness, surface energy of the adsorbed β-lactoglobulin and resulting droplet size distribution are investigated in relation to the solvent properties (aggregation state of β-lactoglobulin) and the treatment of the silica surface (hydrophilization).

View Article and Find Full Text PDF

Melanins are complex pigments with various biological functions and potential applications in space exploration and biomedicine due to their radioprotective properties. Aspergillus niger, a fungus known for its high radiation resistance, is widely used in biotechnology and a candidate for melanin production. In this study, we investigated the production of fungal pyomelanin (Pyo) in by inducing overproduction of the pigment using L-tyrosine in a recombinant Δ mutant strain (OS4.

View Article and Find Full Text PDF

Filamentous fungi produce a wide range of relevant biotechnological compounds. The close relationship between fungal morphology and productivity has led to a variety of analytical methods to quantify their macromorphology. Nevertheless, only a µ-computed tomography (µ-CT) based method allows a detailed analysis of the 3D micromorphology of fungal pellets.

View Article and Find Full Text PDF

Background: Filamentous fungi are used as industrial cell factories to produce a diverse portfolio of proteins, organic acids, and secondary metabolites in submerged fermentation. Generating optimized strains for maximum product titres relies on a complex interplay of molecular, cellular, morphological, and macromorphological factors that are not yet fully understood.

Results: In this study, we generate six conditional expression mutants in the protein producing ascomycete Aspergillus niger and use them as tools to reverse engineer factors which impact total secreted protein during submerged growth.

View Article and Find Full Text PDF

Emerging fungal infections require new, more efficient antifungal agents and therapies. AFP, a protein from with four disulfide bonds, is a promising candidate because it selectively inhibits the growth of filamentous fungi. In this work, the reduced form of AFP was prepared using native chemical ligation.

View Article and Find Full Text PDF

This protocol presents an efficient genetic strategy to investigate gene function in the fungus Aspergillus niger. We combined 5S rRNA-CRISPR-Cas9 technology with Tet-on gene switch to generate conditional-expression mutants via precisely replacing native promoter with inducible promoter. We describe the design and DNA preparation for sgRNAs and donor DNA.

View Article and Find Full Text PDF

This protocol describes procedures for quantifying Aspergillus niger growth in both solid and liquid culture. Firstly, by comparing radial growth between mutant and progenitor isolates on solid agar supplemented with sublethal stressors, susceptibility coefficients can be calculated. Secondly, analysis of macromorphological growth types in liquid culture allows full quantification of how a gene of interest affects submerged growth.

View Article and Find Full Text PDF

The biotechnology- and medicine-relevant fungus is a common colonizer of indoor habitats such as the International Space Station (ISS). Being able to colonize and biodegrade a wide range of surfaces, can ultimately impact human health and habitat safety. Surface contamination relies on two key-features of the fungal colony: the fungal spores, and the vegetative mycelium, also known as biofilm.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are naturally produced by pro- and eukaryotes and are promising alternatives to antibiotics to fight multidrug-resistant microorganisms. However, despite thousands of AMP entries in respective databases, predictions about their structure-activity relationships are still limited. Similarly, common or dissimilar properties of AMPs that have evolved in different taxonomic groups are nearly unknown.

View Article and Find Full Text PDF

Many filamentous fungi are exploited as cell factories in biotechnology. Cultivated under industrially relevant submerged conditions, filamentous fungi can adopt different macromorphologies ranging from dispersed mycelia over loose clumps to pellets. Central to the development of a pellet morphology is the agglomeration of spores after inoculation followed by spore germination and outgrowth into a pellet population, which is usually very heterogeneous.

View Article and Find Full Text PDF

The Special Issue "Connecting materials science with fungal biology" celebrates recent breakthroughs in the fabrication of fungal-based materials, all of which have been made possible by the interdisciplinary and transdisciplinary collaboration of fungal biologists and biotechnologists with artists, designers, materials scientists, and architects. It features conceptual considerations and latest developments of these joint research efforts and the paradigm shift that is involved. The aim of this collection of twelve papers is to highlight the infinite possibilities for the development of innovative fungal-based materials which can be realized through integrating the knowledge and methods from different disciplines.

View Article and Find Full Text PDF

Aspergillus niger, an important industrial workhorse for citric acid production, is characterized by polar hyphal growth with complex pelleted, clumped or dispersed macromorphologies in submerged culture. Although organic acid titres are dramatically impacted by these growth types, studies that assess productivity and macromorphological changes are limited. Herein, we functionally analysed the role of the protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP) signalling cascade during fermentation by disrupting and conditionally expressing the pkaC gene.

View Article and Find Full Text PDF

Background: Filamentous fungi of the phylum Basidiomycota are considered as an attractive source for the biotechnological production of composite materials. The ability of many basidiomycetes to accept residual lignocellulosic plant biomass from agriculture and forestry such as straw, shives and sawdust as substrates and to bind and glue together these otherwise loose but reinforcing substrate particles into their mycelial network, makes them ideal candidates to produce biological composites to replace petroleum-based synthetic plastics and foams in the near future.

Results: Here, we describe for the first time the application potential of the tinder fungus Fomes fomentarius for lab-scale production of mycelium composites.

View Article and Find Full Text PDF

Lab-cultivated mycelia of (FF), grown on a solid lignocellulose medium (FF-SM) and a liquid glucose medium (FF-LM), and naturally grown fruiting bodies (FF-FB) were studied as biosorbents for the removal of organic dyes methylene blue and Congo red (CR). Both the chemical and microstructural differences were revealed using X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, zeta potential analysis, and scanning electron microscopy, illuminating the superiority of FF-LM and FF-SM over FF-FB in dye adsorption. The adsorption process of CR on FF-LM and FF-SM is best described by the Redlich-Peterson model with β constants close to 1, that is, approaching the monolayer Langmuir model, which reach maximum adsorption capacities of 48.

View Article and Find Full Text PDF

Submerged fermentation using filamentous fungal cell factories is used to produce a diverse portfolio of useful molecules, including food, medicines, enzymes, and platform chemicals. Depending on strain background and abiotic culture conditions, different macromorphologies are formed during fermentation, ranging from dispersed hyphal fragments to approximately spherical pellets several millimetres in diameter. These macromorphologies are known to have a critical impact on product titres and rheological performance of the bioreactor.

View Article and Find Full Text PDF

Microbial volatile organic compounds (mVOC) are metabolic products and by-products of bacteria and fungi. They play an important role in the biosphere: They are responsible for inter- and intra-species communication and can positively or negatively affect growth in plants. But they can also cause discomfort and disease symptoms in humans.

View Article and Find Full Text PDF

Background: Biological pigmentation is one of the most intriguing traits of many fungi. It holds significance to scientists, as a sign of biochemical metabolism and organism-environment interaction, and to artists, as the source of natural colors that capture the beauty of the microbial world. Furthermore, the functional roles and aesthetic appeal of biological pigmentation may be a path to inspiring human empathy for microorganisms, which is key to understanding and preserving microbial biodiversity.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3trh6coibka0s3q56efbthpvh865st02): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once