Human land modification is a known driver of animal-to-human transmission of infectious agents (zoonotic spillover). Infection prevalence in the reservoir is a key predictor of spillover, but landscape-level associations between the intensity of land modification and infection rates in wildlife remain largely untested. Bat-borne coronaviruses have caused three major disease outbreaks in humans: severe acute respiratory syndrome (SARS), Middle East respiratory syndrome, and coronavirus disease 2019 (COVID-19).
View Article and Find Full Text PDFOne of the defining features of transposable elements (TEs) is their ability to move to new locations in the host genome. To minimize the potentially deleterious effects of de novo TE insertions, hosts have evolved several mechanisms to control TE activity, including recombination-mediated removal and epigenetic silencing; however, increasing evidence suggests that silencing of TEs is often incomplete. The crow family experienced a recent radiation of LTR retrotransposons (LTRs), offering an opportunity to gain insight into the regulatory control of young, potentially still active TEs.
View Article and Find Full Text PDFClimate change influences population demography by altering patterns of gene flow and reproductive isolation. Direct mutation rates offer the possibility for accurate dating on the within-species level but are currently only available for a handful of vertebrate species. Here, we use the first directly estimated mutation rate in birds to study the evolutionary history of pied flycatchers ().
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana-is an iconic species that is endemic to New Zealand. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled.
View Article and Find Full Text PDFStructural variation (SV) constitutes an important type of genetic mutations providing the raw material for evolution. Here, we uncover the genome-wide spectrum of intra- and interspecific SV segregating in natural populations of seven songbird species in the genus Corvus. Combining short-read (N = 127) and long-read re-sequencing (N = 31), as well as optical mapping (N = 16), we apply both assembly- and read mapping approaches to detect SV and characterize a total of 220,452 insertions, deletions and inversions.
View Article and Find Full Text PDFIn wheatears and related species ('open-habitat chats'), molecular phylogenetics has led to a comprehensively revised understanding of species relationships and species diversity. Phylogenetic analyses have suggested that, in many cases, phenotypic similarities do not reflect species' relationships, revealing traditionally defined genera as non-monophyletic. This led to the suggestion of pervasive parallel evolution of open-habitat chats' plumage coloration and ecological phenotypes.
View Article and Find Full Text PDFRestriction-site associated DNA sequencing (RADSeq) facilitates rapid generation of thousands of genetic markers at relatively low cost; however, several sources of error specific to RADSeq methods often lead to biased estimates of allele frequencies and thereby to erroneous population genetic inference. Estimating the distribution of sample allele frequencies without calling genotypes was shown to improve population inference from whole genome sequencing data, but the ability of this approach to account for RADSeq-specific biases remains unexplored. Here we assess in how far genotype-free methods of allele frequency estimation affect demographic inference from empirical RADSeq data.
View Article and Find Full Text PDFClovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate.
View Article and Find Full Text PDFAnimal exchange networks have been shown to play an important role in determining gene flow among domestic animal populations. The Silk Road is one of the oldest continuous exchange networks in human history, yet its effectiveness in facilitating animal exchange across large geographical distances and topographically challenging landscapes has never been explicitly studied. Horses are known to have been traded along the Silk Roads; however, extensive movement of horses in connection with other human activities may have obscured the genetic signature of the Silk Roads.
View Article and Find Full Text PDF