The structure of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C(4)mpyr][NTf(2)]) room-temperature ionic liquid at an electrified gold interface was studied using neutron reflectometry, cyclic voltammetry, and differential capacitance measurements. Subtle differences were observed between the reflectivity data collected on a gold electrode at three different applied potentials. Detailed analysis of the fitted reflectivity data reveals an excess of [C(4)mpyr](+) at the interface, with the amount decreasing at increasingly positive potentials.
View Article and Find Full Text PDFThe influence of small amounts of water dissolved in 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) on the composition of the surface of the ionic liquid is investigated with the depth profiling technique neutral impact collision ion scattering spectroscopy. The concentration depth profiles of the elements in the sample were determined at three different water concentrations and show that small amounts of water affect the charge distribution in the ionic liquid along the surface normal. At low water concentrations (2500 ppm) the cation shows a strong presence at the surface with the alkyl chains oriented towards the gas phase, followed by a layer of anions below the alkyl chains of the cation.
View Article and Find Full Text PDFNeutral impact collision ion scattering spectroscopy (NICISS) was used to determine the surface structure of three ionic liquids, 1-hexyl-3-methylimidazolium [C(6)mim], 1-octyl-3-methylimidazolium [C(8)mim], 1-decyl-3-methylimidazolium [C(10)mim] tetrafluoroborates [BF(4)]. Concentration depth profiles of the elements in an ionic liquid (IL) homologous series with a common anion were obtained. We show that separation between the oppositely charged ions is seen for all three ionic liquids, resulting in an electrical double layer formation.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2010
The structure of the liquid-vacuum interface in room temperature ionic liquids (ILs) is investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS) and synchrotron X-ray photoelectron spectroscopy (SXPS). By varying the polar angle and comparing the results for the chosen ionic liquids, we identify the presence of a surface layer that is chemically different to the bulk. In particular, this layer: (i) is enriched by aliphatic carbon atoms from the saturated carbon chains of the anions and cations, and (ii) contains an unequal distribution of cations and anions in a direction normal to the surface.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2010
The differential capacitance of the electrical double layer at glassy carbon, platinum and gold electrodes immersed in various ionic liquids was measured using impedance spectroscopy. We discuss the influence of temperature, the composition of the ionic liquids and the electrode material on the differential capacitance/potential curves. For different systems these curves have various overall shapes, but all include several extremes and a common minimum near the open circuit potential.
View Article and Find Full Text PDFThe interfacial tension of the liquid-phase interface in seven immiscible reciprocal ternary mixtures of lithium fluoride with the following alkali halides: CsCl, KBr, RbBr, CsBr, KI, RbI, and CsI was measured using the cylinder weighing method over a wide temperature range. It was shown that for all mixtures the interfacial tension gradually decreases with growing temperature. The interfacial tension of the reciprocal ternary mixtures at a given temperature increases both with the alkali cation radius (K(+) < Rb(+) < Cs(+)) and with the radius of the halogen anion (Cl(-) < Br(-) < I(-)).
View Article and Find Full Text PDFThe surfaces of three imidazolium based ionic liquids with a common anion were studied with angle-resolved X-ray photoelectron spectroscopy (XPS). The room temperature ionic liquids (RTILs): 1-butyl-3-methylimidazolium (bmim), 1-hexyl-3-methylimidazolium (hmim), and 1-octyl-3-methylimidazolium (omim) tetrafluoroborates, were meticulously purified and dried under vacuum. Survey and high-resolution spectra were obtained at different take-off angles (0-84 degrees ), thus increasing the surface sensitivity of the measurement.
View Article and Find Full Text PDF