Publications by authors named "Vera L A Frescura"

The aim of this work is to evaluate the rare earth elements (REEs) recovery from fluid catalytic cracking spent catalyst (FCC-SC) by chemical and biochemical strategies while also examining a route for the valorization of biodiesel-derived glycerin (RG), which is presently unprofitable to refine. Recovery tests for REEs were performed with no pretreatment of the FCC-SC. A chemical leaching investigation was carried out using HCl, HNO, NaOH, CaCl and citric acid aqueous solutions (1 mol L, at 30, 50, 60 or 70 ± 1 °C).

View Article and Find Full Text PDF

The concentration of metals in Brazilian soil under no-tillage (NT) and an area under native vegetation (NV) was determined by inductively coupled plasma mass spectrometry. The applied method was based on microwave-assisted acid digestion using HNO3, HCl, H2O2, and HF. The accuracy of the method was evaluated by analyzing two certified reference materials (BCR-142 and RS-3).

View Article and Find Full Text PDF

A fast method for the determination of As, Co, Cu, Fe, Mn, Ni, Se and V in biological samples by ETV-ICP-MS, after a simple sample treatment with formic acid, is proposed. Approximately 75 mg of each sample is mixed with 5 mL of formic acid, kept at 90°C for 1 h and then diluted with nitric acid aqueous solution to a 5% (v/v) formic acid and 1% (v/v) nitric acid final concentrations. A palladium solution was used as a chemical modifier.

View Article and Find Full Text PDF

A method for the determination of Ag, Cd, Cu, Pb and Tl in fuel alcohol by isotope dilution electrothermal vaporization inductively coupled plasma mass spectrometry (ID ETV-ICP-MS) is proposed. The analytes were separated in two groups: Ag and Cu were determined without modifier and Cd, Pb and Tl with the use of Pd as chemical modifier. The employed ETV operational conditions were pyrolysis temperature of 800 degrees C for Cd, Pb and Tl and of 900 degrees C for Ag and Cu and vaporization temperature of 2400 degrees C for both groups.

View Article and Find Full Text PDF

Among the "traditional" hydride-forming elements, lead is probably the most difficult, and its determination in this form has rarely been reported in the literature. In this paper a simple and rapid method, axial-view inductively-coupled plasma optical-emission spectrometry using on-line hydride generation (HG-ICP-OES) from samples prepared as slurry, is proposed for determination of lead in environmental samples. The samples (20-50 mg, particle size View Article and Find Full Text PDF