Chem Commun (Camb)
January 2025
The two key parameters extracted from Mössbauer spectroscopy, isomer shift and quadrupole splitting, have well-known temperature dependencies. While the behavior of the values following a temperature change has long been known, its microscopic origins are less clear. For quantum chemical calculations - formally representing the situation at 0 K - significant discrepancies with the experiment can arise, especially at elevated temperatures.
View Article and Find Full Text PDFAlkyl nickel intermediates relevant to catalytic processes often feature agostic stabilization, but relatively little is known about the situation in oligonickel systems. The dinickel(I) complex K[LNi], which is based on a compartmental pyrazolato-bridged ligand L with two β-diketiminato chelate arms, or its masked version, the dihydride complex [KL(Ni-H)] that readily releases H, oxidatively add methyl tosylate to give diamagnetic [LNi(CH)] () with (Ni···Ni) ≈ 3.7 Å.
View Article and Find Full Text PDFThe magnetic behavior of endohedrally transition-metal-doped tetrel clusters SnTM (TM = Cr, Mn, Fe) was investigated using a combined experimental and theoretical approach. Based on an improved experimental setup, the magnetic deflection was measured over a wide temperature range of = 16-240 K. From a Curie analysis of the experimentally observed single-sided shift at high nozzle temperatures, the spin multiplicities and -factors were determined.
View Article and Find Full Text PDFThe coordination of the Lewis superacid tris(pentafluorophenyl)alane (AlCF) to phosphine-supported, group 6 bis(dinitrogen) complexes [ML(N)] is explored, with M = Cr, Mo or W and L = dppe (1,2-bis(diphenylphosphino)ethane), depe (1,2-bis(diethylphosphino)ethane), dmpe (1,2-bis(dimethylphosphino)ethane) or 2 × PMePh. Akin to tris(pentafluorophenyl)borane (BCF), AlCF can form 1 : 1 adducts by coordination to one distal nitrogen of general formula -[ML(N){(μ-η:η-N)Al(CF)}]. The boron and aluminium adducts are structurally similar, showing a comparable level of N push-pull activation.
View Article and Find Full Text PDFWe report on the use of a simple, bench-stable [Fe(salen)]-μ-oxo precatalyst in the reduction of nitro compounds. The reaction proceeds at room temperature across a range of substrates, including nitro aromatics and aliphatics. By changing the reducing agent from pinacol borane (HBpin) to phenyl silane (HSiPh), we can chemoselectively reduce nitro compounds while retaining carbonyl functionality.
View Article and Find Full Text PDFA long-standing question in electron transfer research concerns the number and identity of collective nuclear motions that drive electron transfer or localisation. It is well established that these nuclear motions are commonly gathered into a so-called electron transfer coordinate. In this theoretical study, we demonstrate that both anti-symmetric and symmetric vibrational motions are intrinsic to bridged systems, and that both are required to explain the characteristic shape of their intervalence charge transfer bands.
View Article and Find Full Text PDFNuclear forward scattering (NFS) is a synchrotron-based technique relying on the recoil-free nuclear resonance effect similar to Mössbauer spectroscopy. In this work, we introduce NFS for and measurements during electrocatalytic reactions. The technique enables faster data acquisition and better discrimination of certain iron sites in comparison to Mössbauer spectroscopy.
View Article and Find Full Text PDFFeN motifs, found, for instance, in bioinorganic chemistry as heme-type cofactors, play a crucial role in man-made FeNC catalysts for the oxygen reduction reaction. Such single-atom catalysts are a potential alternative to platinum-based catalysts in fuel cells. Since FeNC catalysts are prepared via pyrolysis, the resulting materials are amorphous and contain side phases and impurities.
View Article and Find Full Text PDFWe report the development of a versatile Ru-porphyrin catalyst system which performs the aerobic epoxidation of aromatic and aliphatic (internal) alkenes under mild conditions, with product yields of up to 95% and turnover numbers (TON) up to 300. Water is shown to play a crucial role in the reaction, significantly increasing catalyst efficiency and substrate scope. Detailed mechanistic investigations employing both computational studies and a range of experimental techniques revealed that water activates the Ru di-oxo complex for alkene epoxidation hydrogen bonding, stabilises the Ru mono-oxo intermediate, and is involved in the regeneration of the Ru di-oxo complex leading to oxygen atom exchange.
View Article and Find Full Text PDFPhotosystem II, the water splitting enzyme of photosynthesis, utilizes the energy of sunlight to drive the four-electron oxidation of water to dioxygen at the oxygen-evolving complex (OEC). The OEC harbors a MnCaO cluster that cycles through five oxidation states S ( = 0-4). The S state is the last metastable state before the O evolution.
View Article and Find Full Text PDFA recent study of photoinduced mixed-valency in the one-electron reduced form (μ-pz)[Ru(NH)] of the Creutz-Taube ion used transient absorption spectroscopy with vis-NIR broadband detection to uncover a mixed-valent excited state with a typical intervalence charge transfer band and a nanosecond lifetime [Pieslinger et al. e202211747]. Herein, we use excited state dynamics simulations with implicit solvation to elucidate the electronic and vibrational evolution in the first 10 ps after the optical excitation.
View Article and Find Full Text PDFThe angular overlap model (AOM) is an established parameterization scheme within ligand field theory (LFT). In principle, its application is fairly straightforward, but can be tedious and involve a trial-and-error approach to identify and judge the best set of parameters. With the availability of quantum chemical methods to predict d-d transitions in transition metal complexes, a rich source of computational spectroscopic data with unambiguous assignments to electronic states is available.
View Article and Find Full Text PDFWe report a detailed study into the method of precatalyst activation during alkyne cyclotrimerization. During these studies we have prepared a homologous series of Fe(III)-μ-oxo(salen) complexes and use a range of techniques including UV-vis, reaction monitoring studies, single crystal X-ray diffraction, NMR spectroscopy, and LIFDI mass spectrometry to provide experimental evidence for the nature of the on-cycle iron catalyst. These data infer the likelihood of ligand reduction, generating an iron(salan)-boryl complex as a key on-cycle intermediate.
View Article and Find Full Text PDFThe Marcus model forms the foundation for all modern discussion of electron transfer (ET). In this model, ET results in a change in diabatic potential energy surfaces, separated along an ET nuclear coordinate. This coordinate accounts for all nuclear motion that promotes electron transfer.
View Article and Find Full Text PDFAmmonia and amine ligands are commonly assumed to be σ-only ligands in coordination chemistry, they are not expected to interact significantly with a metal a π path. Ligand field analyses employing the Angular Overlap Model resulted in good fits to experimental data without a π parameter for ammonia ligands, thereby supporting this assumption. In this work, we challenge this assumption and suggest that it is an oversimplification.
View Article and Find Full Text PDFHeteroleptic molybdenum complexes bearing 1,5-diaza-3,7-diphosphacyclooctane (P N ) and non-innocent dithiolene ligands were synthesized and electrochemically characterized. The reduction potentials of the complexes were found to be fine-tuned by a synergistic effect identified by DFT calculations as ligand-ligand cooperativity via non-covalent interactions. This finding is supported by electrochemical studies combined with UV/Vis spectroscopy and temperature-dependent NMR spectroscopy.
View Article and Find Full Text PDFFor a future hydrogen economy, non-precious metal catalysts for the water splitting reactions are needed that can be implemented on a global scale. Metal-nitrogen-carbon (MNC) catalysts with active sites constituting a metal center with fourfold coordination of nitrogen (MN ) show promising performance, but an optimization rooted in structure-property relationships has been hampered by their low structural definition. Porphyrin model complexes are studied to transfer insights from well-defined molecules to MNC systems.
View Article and Find Full Text PDFFor large-scale utilization of fuel cells in a future hydrogen-based energy economy, affordable and environmentally benign catalysts are needed. Pyrolytically obtained metal- and nitrogen-doped carbon (MNC) catalysts are key contenders for this task. Their systematic improvement requires detailed knowledge of the active site composition and degradation mechanisms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2022
The application of an alkyne cyclotrimerization regime with an [Fe(salen)] -μ-oxo (1) catalyst to triphenylmethylphosphaalkyne (2) yields gram-scale quantities of 2,4,6-tris(triphenylmethyl)-Dewar-1,3,5-triphosphabenzene (3). Bulky lithium salt LiHMDS facilitates a rearrangement of 3 to the 1,3,5-triphosphabenzene valence isomer (3'), which subsequently undergoes an intriguing phosphorus migration reaction to form the ring-contracted species (3''). Density functional theory calculations provide a plausible mechanism for this rearrangement.
View Article and Find Full Text PDFNitride complexes are key species in homogeneous nitrogen fixation to NH via stepwise proton-coupled electron transfer (PCET). In contrast, direct generation of nitrogenous organic products from N -derived nitrides requires new strategies to enable efficient reductive nitride transfer in the presence of organic electrophiles. We here present a 2-step protocol for the conversion of dinitrogen to benzonitrile.
View Article and Find Full Text PDFWe report a new series of homoleptic Ni(I) bis-N-heterocyclic carbene complexes with a range of torsion angles between the two ligands from 68° to 90°. Electron paramagnetic resonance measurements revealed a strongly anisotropic -tensor in all complexes with a small variation in ∼ 5.7-5.
View Article and Find Full Text PDFThe properties and reactivities of transition metal complexes are often discussed in terms of Ligand Field Theory (LFT), and with ab initio LFT a direct connection to quantum chemical wavefunctions was recently established. The Angular Overlap Model (AOM) is a widely used, ligand-specific parameterization scheme of the ligand field splitting that has, however, been restricted by the availability and resolution of experimental data. Using ab initio LFT, we present here a generalised, symmetry-independent and automated fitting procedure for AOM parameters that is even applicable to formally underdetermined or experimentally inaccessible systems.
View Article and Find Full Text PDFMethyl groups can have profound effects in drug discovery but the underlying mechanisms are diverse and incompletely understood. Here we report the stereospecific effect of a single, solvent-exposed methyl group in bicyclic [4.3.
View Article and Find Full Text PDF