Publications by authors named "Vera J Mehler"

Recent clinical trials are evaluating induced pluripotent stem cells (iPSCs) as a cellular therapy in the field of regenerative medicine. The widespread clinical utility of iPSCs is expected to be realized using allogeneic cells that have undergone thorough safety evaluations, including assessment of their immunogenicity. IPSC-derived neural crest stem cells (NCSCs) have significant potential in regenerative medicine; however, their application in cellular therapy has not been widely studied to date, and no reports on their potential immunogenicity have been published so far.

View Article and Find Full Text PDF

With their immunosuppressive features, human mesenchymal stromal cells (MSCs), sometimes also termed as mesenchymal stem cells, hold great potential as a cell-based therapy for various immune-mediated diseases. Indeed, MSCs have already been approved as a treatment for graft versus host disease. However, contradictory data from clinical trials and lack of conclusive proof of efficacy hinder the progress toward wider clinical use of MSCs and highlight the need for more relevant disease models.

View Article and Find Full Text PDF

Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus.

View Article and Find Full Text PDF

In recent years several genes have linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as a spectrum disease; however little is known about what triggers their onset. With the ability to generate patient specific stem cell lines from somatic cells, it is possible to model disease without the need to transfect cells with exogenous DNA. These pluripotent stem cells have opened new avenues for identification of disease phenotypes and their relation to specific molecular pathways.

View Article and Find Full Text PDF