Publications by authors named "Vera I Slaveykova"

Silver nanoparticles (AgNPs) are increasingly used in various consumer products and industrial applications, raising concerns about their environmental impact on aquatic ecosystems. This study investigated the physicochemical stability, trophic transfer, and toxic effects of citrate-coated AgNPs in a freshwater food chain including the diatom Cyclotella meneghiniana and the gastropod Lymnaea stagnalis. AgNPs remained stable in the exposure medium, with a minimal dissolution (<0.

View Article and Find Full Text PDF

The present study explores the capability of asymmetrical flow field-flow fractionation (AF4) coupled online with diode array (DAD), fluorescence detectors (FLD), multi-angle light scattering (MALS) and dynamic light scattering (DLS) to characterize silver nanoparticles (nAg) hetero-aggregates formed with diatoms derived extracellular polymeric substances (EPS). The content of EPS varied from 10.5 to 105 mgC L and nAg were dispersed at 4 mg L in a freshwater medium.

View Article and Find Full Text PDF
Article Synopsis
  • Silver nanoparticles (nAg) are commonly used in various applications but their behavior in aquatic environments is influenced by factors like surrounding conditions and extracellular polymeric substances (EPS) from organisms such as diatoms.
  • This study focuses on how EPS from diatoms interact with citrate-coated nAg, affecting their surface properties, stability, and dissolution in freshwater over short and long-term periods.
  • Results indicate that EPS enhance nAg’s stability and reduce their dissolution by forming a protective eco-corona, largely composed of proteins and polysaccharides, which alters how nAg aggregates in water.
View Article and Find Full Text PDF

The influence of inorganic mercury (Hg(II)) exposure on photosynthetic microorganisms and their pigments remains understudied. Here, we employed resonance Raman (RR) spectroscopy to investigate the responses of two freshwater phytoplankton species, the green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana to Hg(II) exposure. We selectively recorded the spectral RR signature of carotenoids in intact cells exposed to concentrations of 10 nM and 100 nM of Hg(II), representative for contaminated environment and unexposed control cells.

View Article and Find Full Text PDF

Mercury is a highly toxic trace metal that can accumulate in aquatic ecosystems and when resent at high concentrations can pose risks to both aquatic life and humans consuming contaminated fish. This research explores the use of the metalloregulatory protein MerR, known for its high affinity and selectivity toward mercury, in a novel application. Through a cell surface engineering approach, MerR was displayed on cells of green alga Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Silver in its various forms, including dissolved silver ions (Ag) and silver nanoparticles (AgNPs), is a promising alternative to traditional antibiotics, largely used in livestock as feed additives and could contribute to the decrease and avoidance of the development of antibiotic resistance. The present study aims to assess the potential ecotoxicity of a silver-based nanomaterial (Ag-kaolin), the feed supplemented with the nanomaterial and the faeces since the latter are the ones that finally reach the environment. To this end, green alga Raphidocellis subcapitata was exposed to the extracts of Ag-kaolin, supplemented feed, and pig faeces for 72 h, along with Ag and AgNPs as controls for comparison purposes.

View Article and Find Full Text PDF

Artisanal and small-scale gold mining (ASGM) is crucial to the livelihoods of close to 20 million people in over 80 countries, including 4-5 million women, mainly in rural areas with limited alternative economic prospects, particularly in developing countries. ASGM is largely informal, which can add to the challenge of addressing negative social and environmental effects including impacts on biodiversity. However, with proper guidance, ASGM can operate in a responsible manner, using cleaner production methods that minimize impacts on human health and the environment.

View Article and Find Full Text PDF

Mercury (Hg) is a priority pollutant of global concern because of its toxicity, its ability to bioaccumulate throughout the food web and reach significant concentrations in top predators. Phytoplankton bioconcentrate large amounts of Hg and play a key role in the entry of Hg into the aquatic food web. However, the subcellular distribution of Hg in freshwater phytoplankton, known to affect it toxicity and trophic transfer is understudied.

View Article and Find Full Text PDF

Mercury is a hazardous pollutant of global concern. While advances have been made in identifying the detrimental effects caused by Hg species in phytoplankton, knowledge gaps remain regarding the metabolomic perturbations induced by inorganic mercury (Hg(II)) and monomethylmercury (MeHg) in these organisms. Diatoms represent a major phytoplankton group essential in various global biogeochemical cycles.

View Article and Find Full Text PDF

Cytochrome c, an iron containing metalloprotein in the mitochondria of the cells with an oxide/redox property, plays key role in the cell apoptotic pathway. In this study, the interaction of silver nanoparticles (AgNPs) with cytochrome c (Cyt c) was investigated by using a combination of spectroscopic, imaging and thermodynamic techniques, including dynamic light scattering (DLS), ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy, near and far circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). DLS and UV-vis analysis evidenced the formation of surface complexes of Cyt c on AgNPs.

View Article and Find Full Text PDF

Limited information exists on how bacterial resistance to antibiotics is acquired and altered in response to short-term metal stress, and what the prevailing pathways are. Here the precursor mechanisms of development of bacterial antibiotic resistance mediated by oxidative stress induce under sub-lethal Cu exposure were explored. The results showed that the overall level of antibiotic resistance in wild-type Escherichia coli and antibiotic-resistant E.

View Article and Find Full Text PDF

Nano-sized titanium dioxide (nTiO) is one of the most commonly used materials, however the knowledge about the molecular basis for metabolic and physiological changes in phytoplankton is yet to be explored. In the present study we use a combination of targeted metabolomics, transcriptomics and physiological response studies to decipher the metabolic perturbation in green alga exposed for 72 h to increasing concentrations (2, 20, 100 and 200 mg L) of nTiO with primary sizes of 5, 15 and 20 nm. Results show that the exposure to all three nTiO materials induced perturbation of the metabolism of amino acids, nucleotides, fatty acids, tricarboxylic acids, antioxidants but not in the photosynthesis.

View Article and Find Full Text PDF

The increased use of nanoparticle (NP)-enabled materials in everyday-life products have raised concerns about their environmental implications and safety. This motivated the extensive research in nanoecotoxicology showing the possibility that NPs could cause harm to the aquatic organisms if present at high concentrations. By contrast, studies dealing with influence that organisms could exert on the fate and thus effects of NPs are still very rare.

View Article and Find Full Text PDF

Metal-based nanoparticles (NPs) are considered detrimental to aquatic organisms due to their potential accumulation. However, little is known about the mechanisms underlying these effects and their species-specificity. Here we used stable silver (Ag) NPs (20 nm, from 10 to 500 μg/L) with a low dissolution rate (≤2.

View Article and Find Full Text PDF

The microbial community composition in aquatic ecosystems have received increased attention. However, the knowledge gap relative to the responses of bacterial, archaeal and fungal communities in co-contaminated river sediments remain poorly studied. Here, we investigated the changes of tetrabromobisphenol A (TBBPA) and copper (Cu) concentrations and the responses of microbial communities in co-contaminated sediments during long-term incubation.

View Article and Find Full Text PDF

Plankton, at the bottom of the food web, play a central role in the entry of mercury into the aquatic biota. To investigate their role in mercury uptake, reliable analytical procedures for Hg analysis are highly sought. Wet digestion procedures for determining total mercury in different biological matrices have been established since years, however only few studies focused on planktonic samples.

View Article and Find Full Text PDF

Asymmetrical flow field-flow fractionation (AF4) efficiently separates various macromolecules and nano-components of natural waters according to their hydrodynamic sizes. The online coupling of AF4 with fluorescence (Fluo) and UV absorbance (UV) detectors (FluoD and UVD, respectively) and inductively coupled plasma-mass spectrometry (ICP-MS) provides multidimensional information. This makes it a powerful tool to characterize and quantify the size distributions of organic and inorganic nano-sized components and their interaction with trace metals.

View Article and Find Full Text PDF

Asymmetrical flow field-flow fractionation (AF4) is a powerful technique employed for the separation of macromolecules, nanoparticles, and their assemblages according to their hydrodynamic behavior. It is well known that at this size range, complex interactions can occur between components (e.g.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (nTiO) are widely used in numerous products, yet their role in the accumulation and transfer of other contaminants in the aquatic food webs is not well understood. The influence of nTiO on inorganic (IHg) and monomethyl mercury (MeHg) accumulation in invertebrate Daphnia magna through waterborne and dietary exposure was thus thoroughly investigated. The results showed that nTiO led to a substantial decrease of the total mercury body burden (THg) in D.

View Article and Find Full Text PDF

Understanding of mercury (Hg) complexation with low molecular weight (LMW) bioligands will help elucidate its speciation. In natural waters, the rate of this complexation is governed by physicochemical, geochemical, and biochemical parameters. However, the role of bioligands involved in Hg intracellular handling by aquatic microorganisms is not well documented.

View Article and Find Full Text PDF

We present a novel meta-community approach to explore the influence of species traits, such as adult body size, larval feeding type and microhabitat, as well as larval macrohabitat (main river channel vs. floodplain water bodies) on the concentration of total Hg accumulated ([THg]) in assemblages of adult caddisflies. We analyzed [THg] in 157 light-trapped adult caddisflies in a floodplain sector of the French upper Rhône River and used a linear mixed effect model to decipher the role of species traits and habitats in Hg accumulation.

View Article and Find Full Text PDF

The present study aims to explore the bioaccumulation and biotic transformations of inorganic (iHg) and monomethyl mercury (MMHg) by natural pico-nanoplankton community from eutrophic lake Soppen, Switzerland. Pico-nanoplankton encompass mainly bacterioplankton, mycoplankton and phytoplankton groups with size between 0.2 and 20 μm.

View Article and Find Full Text PDF

Metabolomics characterizes low-molecular-weight molecules involved in different biochemical reactions and provides an integrated assessment of the physiological state of an organism. By using liquid chromatography-mass spectrometry targeted metabolomics, we examined the response of green alga to sublethal concentrations of inorganic mercury (IHg) and monomethylmercury (MeHg). We quantified the changes in the levels of 93 metabolites preselected based on the disturbed metabolic pathways obtained in a previous transcriptomics study.

View Article and Find Full Text PDF

Cerium (Ce) is a rare earth element that is incorporated in numerous consumer products, either in its cationic form or as engineered nanoparticles (ENPs). Given the propensity of small oxide particles to dissolve, it is unclear whether biological responses induced by ENPs will be due to the nanoparticles themselves or rather due to their dissolution. This study provides the foundation for the development of transcriptomic biomarkers that are specific for ionic Ce in the freshwater alga, Chlamydomonas reinhardtii, exposed either to ionic Ce or to two different types of small Ce ENPs (uncoated, ∼10 nm, or citrate-coated, ∼4 nm).

View Article and Find Full Text PDF