The widespread occurrence of breast cancer and its propensity to develop drug resistance highlight the need for a comprehensive understanding of the molecular mechanisms involved. This study investigates the intricate pathways associated with secondary resistance to taxol in triple-negative breast cancer (TNBC) cells, with a particular focus on the changes observed in the cytoplasmic actin isoforms. By studying a taxol-resistant TNBC cell line, we revealed a shift between actin isoforms towards γ-actin predominance, accompanied by increased motility and invasive properties.
View Article and Find Full Text PDFCancer cell aggressiveness, marked by actin cytoskeleton reconfiguration critical for metastasis, may result from an imbalanced ratio favoring γ-actin. Dysfunctional p53 emerges as a key regulator of invasiveness and migration in various cancer cells, both in vitro and in vivo. P53 inactivation (via mutants R175H, R248W, R273H, or TP53 repression) significantly enhanced the migration, invasion, and proliferation of human lung adenocarcinoma A549 cells in vitro and in vivo, facilitating intrapulmonary xenograft metastasis in athymic mice.
View Article and Find Full Text PDFAurora kinases are essential players in mammalian cell division. These kinases are involved in the regulation of spindle dynamics, microtubule-kinetochore interactions, and chromosome condensation and orientation during mitosis. At least three members of the Aurora family - Aurora kinases A, B, and C - have been identified in mammals.
View Article and Find Full Text PDFThe mechanisms that regulate the spatial sorting of nonmuscle myosins-2 (NM2) isoforms and couple them mechanically to the plasma membrane are unclear. Here we show that the cytoplasmic junctional proteins cingulin (CGN) and paracingulin (CGNL1) interact directly with NM2s through their C-terminal coiled-coil sequences. CGN binds strongly to NM2B, and CGNL1 to NM2A and NM2B.
View Article and Find Full Text PDFLung and colorectal cancers are the most common types of cancer characterized by a poor prognosis and a high mortality rate. Mutations in the genes encoding components of the main intra- and extracellular signaling pathways, in particular the NOTCH1 gene (Notch1, a member of the Notch family of receptors), play one of the key roles in progression of these malignancies. Notch signaling is involved in maintaining homeostasis of the intestinal epithelium and structural and functional lung elements.
View Article and Find Full Text PDFThe primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases.
View Article and Find Full Text PDFWe have shown previously that two cytoplasmic actin isoforms play different roles in neoplastic cell transformation. Namely, β-cytoplasmic actin acts as a tumor suppressor, whereas γ-cytoplasmic actin enhances malignant features of tumor cells. The distinct participation of each cytoplasmic actin in the cell cycle driving was also observed.
View Article and Find Full Text PDFInhibition of KIT-signaling is a major molecular target for gastrointestinal stromal tumor (GIST) therapy, and imatinib mesylate (IM) is known as the most effective first-line treatment option for patients with advanced, unresectable, and/or metastatic GISTs. We show here for the first time that the inhibition of KIT-signaling in GISTs induces profound changes in the cellular secretome, leading to the release of multiple chemokines, including FGF-2. IM increased migration, invasion, and colony formation of IM-resistant GISTs in an FGF2-dependent manner, whereas the use of blocking anti-FGF2 antibodies or BGJ398, a selective FGFR inhibitor, abolished these effects, thus suggesting that the activation of FGF2-mediated signaling could serve as a compensatory mechanism of KIT-signaling inhibited in GISTs.
View Article and Find Full Text PDFAntimicrotubule vinca alkaloids are widely used in the clinic but their toxicity is often dose limiting. Strategies that enhance their effectiveness at lower doses are needed. We show that combining vinca alkaloids with compounds that target a specific population of actin filaments containing the cancer-associated tropomyosin Tpm3.
View Article and Find Full Text PDFWe have shown that cytoplasmic actin isoforms play different roles in neoplastic cell transformation. β-Cytoplasmic actin acts as a tumor suppressor, affecting epithelial differentiation, cell growth, cell invasion and tumor growth of colon and lung carcinoma cells. In contrast, γ-cytoplasmic actin enhances malignant features of tumor cells whose actin network regulation is carried out the γ-actin isoform.
View Article and Find Full Text PDFUnlabelled: Mitochondria are important regulators of tumour growth and progression due to their specific role in cancer metabolism and modulation of apoptotic pathways. In this paper we describe that mitochondria-targeted antioxidant SkQ1 designed as a conjugate of decyl-triphenylphosphonium cation (TPP) with plastoquinone, suppressed the growth of fibrosarcoma HT1080 and rhabdomyosarcoma RD tumour cells in culture and tumour growth of RD in xenograft nude mouse model. Under the same conditions, no detrimental effect of SkQ1 on cell growth of primary human subcutaneous fibroblasts was observed.
View Article and Find Full Text PDFActin filaments, with their associated tropomyosin polymers, and microtubules are dynamic cytoskeletal systems regulating numerous cell functions. While antimicrotubule drugs are well-established, antiactin drugs have been more elusive. We previously targeted actin in cancer cells by inhibiting the function of a tropomyosin isoform enriched in cancer cells, Tpm3.
View Article and Find Full Text PDFIn the course of cancer progression, epithelial cells often acquire morphological and functional characteristics of mesenchymal cells, a process known as epithelial-to-mesenchymal transition (EMT). EMT provides epithelial cells with migratory, invasive, and stem cell capabilities. Reactive oxygen species produced by mitochondria (mtROS) could be of special importance for pro-tumorigenic signaling and EMT.
View Article and Find Full Text PDFActin microfilaments and microtubules are both highly dynamic cytoskeleton components implicated in a wide range of intracellular processes as well as cell-cell and cell-substrate interactions. The interactions of actin filaments with the microtubule system play an important role in the assembly and maintenance of 3D cell structure. Here we demonstrate that cytoplasmic actins are differentially distributed in relation to the microtubule system.
View Article and Find Full Text PDFα-Smooth Muscle Actin (α-SMA), a widely characterized cytoskeletal protein, represents the hallmark of myofibroblast differentiation. Transforming growth factorβ1 (TGFβ1) stimulates α-SMA expression and incorporation into stress fibers, thus providing an increased myofibroblast contractile force that participates in tissue remodeling. We have addressed the molecular mechanism by which α-SMA is stably incorporated into stress fibers in human myofibroblasts following exposure to TGFβ1.
View Article and Find Full Text PDFHere we have shown that β-cytoplasmic actin acts as a tumor suppressor, inhibiting cell growth and invasion in vitro and tumor growth in vivo. In contrast, γ-cytoplasmic actin increases the oncogenic potential via ERK1/2, p34-Arc, WAVE2, cofilin1, PP1 and other regulatory proteins. There is a positive feedback loop between γ-actin expression and ERK1/2 activation.
View Article and Find Full Text PDFTransdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells.
View Article and Find Full Text PDFIn higher vertebrates, smooth muscle (SM) contains two tissue-specific actin isoforms: α-SMA and γ-SMA, which predominate in vascular and visceral SM, respectively. Whether α-SMA has been extensively studied and recognized for its contractile activity in SM and SM-like cells such as myofibroblasts, myoepithelial and myoid cells, the distribution and role of γ-SMA remained largely unknown. We developed a new specific monoclonal antibody against γ-SMA and confirmed that γ-SMA predominates in the visceral system and is minor in the vascular system, although more expressed in highly compliant veins than in stiff arteries.
View Article and Find Full Text PDFSince the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2-demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria-targeted antioxidants effective in treating a large number of age-related pathologies.
View Article and Find Full Text PDFElevated endothelial microparticle (MP) levels are observed in numerous diseases, increasingly supporting roles as effectors and valuable markers of vascular dysfunction. While a contractile role for the actin cytoskeleton has been implicated in vesiculation, i.e.
View Article and Find Full Text PDFAssociation with the actin cytoskeleton is critical for normal architecture and dynamics of epithelial tight junctions (TJs) and adherens junctions (AJs). Epithelial cells express β-cytoplasmic (β-CYA) and γ-cytoplasmic (γ-CYA) actins, which have different cellular localization and functions. This study elucidates the roles of cytoplasmic actins in regulating structure and remodeling of AJs and TJs in model intestinal epithelia.
View Article and Find Full Text PDFIn mammals, female meiosis consists of two asymmetric cell divisions, which generate a large haploid oocyte and two small polar bodies. Asymmetric partitioning of the cytoplasm results from migration of the meiotic spindle toward the cortex and requires actin filaments. However, the subcellular localization and the role of the existing two cytoplasmic actin (CYA) isoforms, beta and gamma, have not been characterized.
View Article and Find Full Text PDFThe goal of this study was to investigate the possible role of reactive oxygen species (ROS) in signaling, in modulation of the cytoskeleton, and in differentiation of fibroblasts. For this purpose, we have applied a novel mitochondria-targeted antioxidant: plastoquinone conjugated with decyltriphenylphosphonium (SkQ1). This antioxidant at nanomolar concentration prevented ROS accumulation and cell death induced by H(2)O(2) in fibroblasts.
View Article and Find Full Text PDFUsing newly generated monoclonal antibodies, we have compared the distribution of beta- and gamma-cytoplasmic actin in fibroblastic and epithelial cells, in which they play crucial roles during various key cellular processes. Whereas beta-actin is preferentially localized in stress fibers, circular bundles and at cell-cell contacts, suggesting a role in cell attachment and contraction, gamma-actin displays a more versatile organization, according to cell activities. In moving cells, gamma-actin is mainly organized as a meshwork in cortical and lamellipodial structures, suggesting a role in cell motility; in stationary cells, gamma-actin is also recruited into stress fibers.
View Article and Find Full Text PDFWe have previously shown that the N-terminal sequence AcEEED of alpha-smooth-muscle actin causes the loss of alpha-smooth-muscle actin from stress fibers and a decrease in cell contractility when introduced in myofibroblasts as a cell-penetrating fusion peptide. Here, we have investigated the function of this sequence on stress fiber organization in living cells, using enhanced green fluorescent protein (EGFP)-tagged alpha-smooth-muscle actin. The fusion peptide provokes the gradual disappearance of EGFP fluorescence of alpha-smooth-muscle actin from stress fibers and the formation of hitherto unknown rod-like structures.
View Article and Find Full Text PDF