Publications by authors named "Vera Divac"

New scaffolds derived from benzylamine were prepared, characterized, and tested for their antimicrobial, antioxidant activities and binding interactions with BSA. Structure-activity relationship analysis revealed that compounds incorporating both benzylamine and quinoline or pyridine moieties (specifically 3a and 3d) demonstrated potent antifungal activity, surpassing that of the standard drug Ketoconazole against Penicillium italicum. Molecular docking studies confirmed significant inhibitory activity against the CYP51B enzyme-an essential component of fungal cell walls.

View Article and Find Full Text PDF
Article Synopsis
  • A series of novel tryptamine-derived Schiff bases was synthesized to explore new pharmacological properties, leveraging the indole pharmacophore.
  • TSB4 exhibited superior antifungal activity compared to the standard drug Fluconazole, while TSB6 demonstrated cytotoxic effects on HCT-116 cancer cells with selectivity for healthy fibroblast cells.
  • Additional analysis showed strong binding to CT-DNA and favorable ADME properties, indicating potential for oral bioavailability and drug-like characteristics.
View Article and Find Full Text PDF

Guided by the idea that the presence of a heterocyclic aromatic core and tyramine moiety, under the umbrella of a single molecular scaffold could bring interesting biological properties, herein we present synthesis, characterization, with two crystal structures reported, and biological evaluation of some tyramine derivates. Cytotoxic and antimigratory potential was addressed by using a colorectal cancer cell line as a model system. Although possessing no cytotoxic effects, two compounds have shown strong antimigratory potential in low doses, with no effect on healthy MRC-5 cells.

View Article and Find Full Text PDF

The medicinal properties of transition metal complexes are greatly influenced by the nature and physico-chemical features of the ligand present in the complex structure. Due to the unique biological properties of the organoselenium compounds reflected in the variety of pharmacological activities (such as antioxidative, antiviral, antimicrobial and anticancer), the last years have brought increased interest for their use as a ligands compounds in the design and syntheses of range of transition metal-based coordination compounds that have been explored as antitumor and antimicrobial agents. Our aim in this review is to provide the overview of an recent development of the transition metal complexes bearing organoselenium ligands in the structure that could be promising choice for the treatment of various diseases, particularly cancer and infective diseases.

View Article and Find Full Text PDF

Organoselenium chemistry has undergone extensive development during the past decades, mostly due to the unique chemical properties of organoselenium compounds that have been widely explored in a number of synthetic transformations, as well as due to the interesting biological properties of these compounds. Diselenides and selenocyanates constitute the promising classes of organoselenium compounds that possess interesting biological effects, and that can be used in the preparation of other selenium compounds. The combination of diselenide and selenocyanate moieties with other biologically relevant molecules (such as heterocycles, steroids, etc.

View Article and Find Full Text PDF

Background: Over the years, transition metal complexes have exhibited significant antimicrobial and antitumor activity. It all started with cisplatin discovery, but due to the large number of side effects it shows, there is a growing need to find a new metal-based compound with higher selectivity and activity on more tumors.

Objectives: Two novel trans-palladium(II) complexes with organoselenium compounds as ligands, [Pd(L1)Cl] (L1 = 5-(phenylselanylmethyl)-dihydrofuran-2(3H)-one) and [Pd(L2)Cl] (L2 = 2- methyl-5-(phenylselanylmethyl)- tetrahydrofuran) were synthesized, in the text referred to as Pd-Se1 and Pd-Se2.

View Article and Find Full Text PDF

The reaction of the Δ-alkenols with PhSeX can follow three possible reaction pathways: two pathways lead to the formation of two regioisomeric cyclic ether products through the process of intramolecular cyclization, while the third represents the addition of the reagent to the double bond of an alkenol. As there are relatively few literature data on the kinetics of these reactions, we have chosen 6-methyl-hept-5-en-2-ol as a substrate of interest in order to obtain valuable results that will enable better understanding of the mechanism of phenylselenoetherification reactions. 6-Methyl-hept-5-en-2-ol is a particularly interesting model-substrate due to its substitution pattern of functional groups involved in the cyclization process.

View Article and Find Full Text PDF

Solvent effects on the absorption and fluorescence spectra of Zaleplon, a nonbenzodiazepine sedative/hypnotic drug that is mainly used for the short term treatment of insomnia, were investigated in 18 different solvents with diverse polarities. Dipole moments of the ground and excited state (μ and μ) were determined by Lippert-Mataga, Bakhshiev, Reichardt, McRae and Suppan solvatochromic methods. The dipole moment of Zaleplon ground state in the gas phase has been calculated as μ = 10.

View Article and Find Full Text PDF

Two novel Pd(II) complexes with 2-(phenylselanylmethyl)oxolane and 2-(phenylselanylmethyl)oxane as ligands were synthesized. The crystal and molecular structure of the complexes has been determined by single crystal X-ray diffraction. It turned out for both complexes that the two ligands are coordinated to Pd via Se atoms in a trans-fashion and the other two trans-positions are occupied by Cl ions.

View Article and Find Full Text PDF

The mechanism of phenylselenoetherification of (Z)- and (E)-hex-4-en-1-ols using some bases (triethylamine, pyridine, quinoline, 2,2'-bipyridine) as catalysts and some solvents [tetrahydrofuran (THF) and CCl4] as reaction media was examined through studies of kinetics of the cyclization by UV-vis spectrophotometry. It was demonstrated that the intramolecular cyclization is facilitated in the presence of bases as a result of the hydrogen bond between the base and the alkenol's OH group. The rate constants in the base-catalyzed reactions are remarkably influenced by the bulkiness and basicity of the base used and the nature of the considered nitrogen donors.

View Article and Find Full Text PDF

The mechanism of phenylselenoetherification of pent-4-en-1-ol using some bases (pyridine, triethylamine, quinoline, 2,2'-bipyridine) as catalyst was examined through studies of kinetics of the cyclization, by UV-VIS spectrophotometry. It was demonstrated that the intramolecular cyclization is facilitated in the presence of bases caused by the hydrogen bond between base and alkenol's OH-group. The obtained values for rate constants have shown that the reaction with triethylamine is the fastest one.

View Article and Find Full Text PDF