Publications by authors named "Vera Desmarais"

Although the CXCL12/CXCR4 pathway has been prior investigated for its prometastatic and immuno- suppressive roles in the tumor microenvironment, evidence on the spatiotemporal regulation of these hallmarks has been lacking. Here, we demonstrate that CXCL12 forms a gradient specifically around cancer cell intravasation doorways, also known as Tumor Microenvironment of Metastasis (TMEM) doorways, thus facilitating the chemotactic translocation of prometastatic tumor cells expressing CXCR4 toward the perivascular TMEM doorways for subsequent entry into peripheral circulation. Fur- thermore, we demonstrate that the CXCL12-rich micro-environment around TMEM doorways may cre- ate immunosuppressive niches, whereby CD8 T cells, despite being attracted to these regions, often exhibit reduced effector functions, limiting their efficacy.

View Article and Find Full Text PDF

Chronic intestinal inflammation significantly contributes to the development of colorectal cancer (CRC) and remains a pertinent clinical challenge, necessitating novel therapeutic approaches. Indole-based microbial metabolite mimics FKK6, which is a ligand and agonist of the pregnane X receptor (PXR), was recently demonstrated to have PXR-dependent anti-inflammatory and protective effects in a mouse model of dextran sodium sulfate (DSS)-induced acute colitis. Here, we examined the therapeutic potential of FKK6 in a mouse model (C57BL/6 FVB humanized PXR mice) of colitis-associated colon cancer (CAC) induced by azoxymethane (AOM) and dextran sodium sulfate (DSS).

View Article and Find Full Text PDF

The thymus, a central primary lymphoid organ of the immune system, plays a key role in T cell development. Surprisingly, the thymus is quite neglected with regards to standardized pathology approaches and practices for assessing structure and function. Most studies use multispectral flow cytometry to define the dynamic composition of the thymus at the cell population level, but they are limited by lack of contextual insight.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) is difficult to treat due to its ability to evade immune responses, but a new microbiome-based therapy shows promise by introducing a tetanus toxoid protein into tumor cells, reactivating existing T cell responses.
  • In mouse models, this treatment led to the accumulation of the tetanus protein in tumors, recruitment of CD4 T cells, and the production of immune molecules that help kill tumor cells, especially when combined with low doses of gemcitabine (GEM).
  • The combination treatment significantly reduced tumor size (by 80%) and metastases (by 87%), while increasing survival rates in treated mice, suggesting this approach could be a viable alternative for
View Article and Find Full Text PDF

Microbial metabolite mimicry is a new concept that promises to deliver compounds that have minimal liabilities and enhanced therapeutic effects in a host. In a previous publication, we have shown that microbial metabolites of L-tryptophan, indoles, when chemically altered, yielded potent anti-inflammatory pregnane X Receptor (PXR)-targeting lead compounds, FKK5 and FKK6, targeting intestinal inflammation. Our aim in this study was to further define structure-activity relationships between indole analogs and PXR, we removed the phenyl-sulfonyl group or replaced the pyridyl residue with imidazolopyridyl of FKK6.

View Article and Find Full Text PDF

We systematically evaluated the performance and reliability of several widely used, commercially available actin-filament probes in a highly motile breast adenocarcinoma cell line to optimize the visualization of F-actin-rich dynamic lamellipodia. We evaluated four Phalloidin-fluorophores, two anti-actin antibodies, and three live-cell actin probes in five fixation conditions across three imaging platforms as a basis for the design of optimized protocols. Of the fluorescent phalloidin-dye conjugates tested, Alexa Fluor-488 Phalloidin ranked best in overall labeling of the actin cytoskeleton and maintenance of the fluorescence signal over time.

View Article and Find Full Text PDF

HIV-1 Tat protein contributes to HIV-neuropathogenesis in several ways including its ability to be taken up by uninfected bystander CNS cells and to activate inflammatory host genes causing synaptic injury. Here, we report that in the globally dominant HIV-1 clade C, Tat displays a naturally occurring polymorphism, R57S, in its basic domain, which mediates cellular uptake. We examined the effect of this polymorphism on Tat uptake and its consequences for cellular gene transactivation.

View Article and Find Full Text PDF

BackgroundThere is substantial evidence that signaling through Toll-like receptor 4 (TLR4) contributes to the pathogenesis of necrotizing enterocolitis (NEC). Pregnane X receptor (PXR), a xenobiotic sensor and signaling intermediate for certain host-bacterial metabolites, has been shown to negatively regulate TLR4 signaling. Here we investigated the relationship between PXR and TLR4 in the developing murine intestine and explored the capacity of PXR to modulate inflammatory pathways involved in experimental NEC.

View Article and Find Full Text PDF

Invadopodia are matrix-degrading membrane protrusions in invasive carcinoma cells. The mechanisms regulating invadopodium assembly and maturation are not understood. We have dissected the stages of invadopodium assembly and maturation and show that invadopodia use cortactin phosphorylation as a master switch during these processes.

View Article and Find Full Text PDF

Metastatic mammary carcinoma cells, which have previously been observed to form mature, matrix degrading invadopodia on a thick ECM matrix, are able to form invadopodia with similar characteristics on glass without previously applied matrix. They form in response to epidermal growth factor (EGF), and contain the usual invadopodium core proteins N-WASP, Arp2/3, cortactin, cofilin, and F-actin. The study of invadopodia on glass allows for higher resolution analysis including the use of total internal reflection microscopy and analysis of their relationship to other cell motility events, in particular, lamellipodium extension and chemotaxis toward an EGF gradient.

View Article and Find Full Text PDF

It is well known that in fMLP-stimulated neutrophils, phosphatidyl inositol 3,4,5-trisphosphate [PI(3,4,5)P3] localizes at the leading edge of the cells. However, no effort has been made to study the PI 4,5-bisphosphate [PI(4,5)P2] distribution in these cells. In fact, it has been suggested that PI(4,5)P2 is unlikely to localize, as its basal level is orders of magnitude higher than that of PI(3,4,5)P3.

View Article and Find Full Text PDF

We examined the role of the actin nucleation promoters neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE2 in cell protrusion in response to epidermal growth factor (EGF), a key regulator in carcinoma cell invasion. We found that WAVE2 knockdown (KD) suppresses lamellipod formation and increases filopod formation, whereas N-WASP KD has no effect. However, simultaneous KD of both proteins results in the formation of large jagged protrusions with lamellar properties and increased filopod formation.

View Article and Find Full Text PDF

Lamellipodial protrusion and directional migration of carcinoma cells towards chemoattractants, such as epidermal growth factor (EGF), depend upon the spatial and temporal regulation of actin cytoskeleton by actin-binding proteins (ABPs). It is generally hypothesized that the activity of many ABPs are temporally and spatially regulated by PIP(2); however, this is mainly based on in vitro-binding and structural studies, and generally in vivo evidence is lacking. Here, we provide the first in vivo data that directly visualize the spatial and temporal regulation of cofilin by PIP(2) in living cells.

View Article and Find Full Text PDF

Nkx2-5 is a homeobox containing transcription factor that is conserved and expressed in organisms that form hearts. Fruit flies lacking the gene (tinman) fail to form a dorsal vessel, mice that are homozygous null for Nkx2-5 form small, deformed hearts, and several human cardiac defects have been linked to dominant mutations in the Nkx2-5 gene. The Xenopus homologs (XNkx2-5) of two truncated forms of Nkx2-5 that have been identified in humans with congenital heart defects were used in the studies reported here.

View Article and Find Full Text PDF

Background: Previous work has led to the hypothesis that cofilin severing, as regulated by PLC, is involved in chemotactic sensing. We have tested this hypothesis by investigating whether activation of endogenous cofilin is spatially and temporally linked to sensing an EGF point source in carcinoma cells.

Results: We demonstrate that inhibition of endogenous cofilin activity with either siRNA or overexpression of LIMK suppresses directional sensing in carcinoma cells.

View Article and Find Full Text PDF

Cofilin has emerged as a key regulator of actin dynamics at the leading edge of motile cells. Through its actin-severing activity, it creates new actin barbed ends for polymerization and also depolymerizes old actin filaments. Its function is tightly regulated in the cell.

View Article and Find Full Text PDF

Activation of the epidermal growth factor (EGF) receptor can stimulate actin polymerization via the Arp2/3 complex using a number of signaling pathways, and specific stimulation conditions may control which pathways are activated. We have previously shown that localized stimulation of EGF receptor with EGF bound to beads results in localized actin polymerization and protrusion. Here we show that the actin polymerization is dependent upon activation of the Arp2/3 complex by neural Wiskott-Aldrich Syndrome protein (N-WASP) via Grb2 and Nck2.

View Article and Find Full Text PDF

The epidermal growth factor (EGF)-induced increase in free barbed ends, resulting in actin polymerization at the leading edge of the lamellipodium in carcinoma cells, occurs as two transients: an early one at 1 min and a late one at 3 min. Our results reveal that phospholipase (PLC) is required for triggering the early barbed end transient. Phosphoinositide-3 kinase selectively regulates the late barbed end transient.

View Article and Find Full Text PDF

Both the Arp2/3 complex and cofilin are believed to be important for the generation of protrusive force at the leading edge; however, their relative contributions have not been explored in vivo. Our results with living cells show that cofilin enters the leading edge immediately before the start of lamellipod extension, slightly earlier than Arp2/3, which begins to be recruited slightly later as the lamellipod is extended. Blocking either the Arp2/3 complex or cofilin function in cells results in failure to extend broad lamellipods and inhibits free barbed ends, suggesting that neither factor on its own can support actin polymerization-mediated protrusion in response to growth factor stimulation.

View Article and Find Full Text PDF

Motility is associated with the ability to extend F-actin-rich protrusions and depends on free barbed ends as new actin polymerization sites. To understand the function and regulation of different proteins involved in the process of generating barbed ends, e.g.

View Article and Find Full Text PDF

Rapid polymerization of a network of short, branched actin filaments takes place at the leading edge of migrating cells, a compartment enriched in activators of actin polymerization such as the Arp2/3 complex and cofilin. Actin filaments elsewhere in the cell are long and unbranched. Results reported here show that the presence or absence of tropomyosin in these different actin-containing regions helps establish functionally distinct actin-containing compartments in the cell.

View Article and Find Full Text PDF