Publications by authors named "Vera A Cherepanova"

Carbon materials have paramount importance in various fields of materials science, from electronic devices to industrial catalysts. The properties of these materials are strongly related to the distribution of defects-irregularities in electron density on their surfaces. Different materials have various distributions and quantities of these defects, which can be imaged using a procedure that involves depositing palladium nanoparticles.

View Article and Find Full Text PDF

Automated computational analysis of nanoparticles is the key approach urgently required to achieve further progress in catalysis, the development of new nanoscale materials, and applications. Analysis of nanoscale objects on the surface relies heavily on scanning electron microscopy (SEM) as the experimental analytic method, allowing direct observation of nanoscale structures and morphology. One of the important examples of such objects is palladium on carbon catalysts, allowing access to various chemical reactions in laboratories and industry.

View Article and Find Full Text PDF

Sparkling drinks such as cola can be considered an affordable and inexpensive starting material consisting of carbohydrates and sulfur- and nitrogen-containing organic substances in phosphoric acid, which makes them an excellent precursor for the production of heteroatom-doped carbon materials. In this study, heteroatom-doped carbon materials were successfully prepared in a quick and simple manner using direct carbonization of regular cola and diet cola. The low content of carbon in diet cola allowed reaching a higher level of phosphorus in the prepared carbon material, as well as obtaining additional doping with nitrogen and sulfur due to the presence of sweeteners and caffeine.

View Article and Find Full Text PDF

Smoothness/defectiveness of the carbon material surface is a key issue for many applications, spanning from electronics to reinforced materials, adsorbents and catalysis. Several surface defects cannot be observed with conventional analytic techniques, thus requiring the development of a new imaging approach. Here, we evaluate a convenient method for mapping such "hidden" defects on the surface of carbon materials using 1-5 nm metal nanoparticles as markers.

View Article and Find Full Text PDF

A unique ordering effect has been observed in functional catalytic nanoscale materials. Instead of randomly arranged binding to the catalyst surface, metal nanoparticles show spatially ordered behavior resulting in formation of geometrical patterns. Understanding of such nanoscale materials and analysis of corresponding microscopy images will never be comprehensive without appropriate reference datasets.

View Article and Find Full Text PDF

In recent years, the application of microwave (MW) irradiation has played an increasingly important role in the synthesis and development of high performance nanoscale catalytic systems. However, the interaction of microwave irradiation with solid catalytic materials and nanosized structures remains a poorly studied topic. In this paper we carried out a systematic study of changes in morphology under the influence of microwave irradiation on nanoscale particles of various metals and composite particles, including oxides, carbides, and neat metal systems.

View Article and Find Full Text PDF

Metal on carbon catalysts (M/C) are ubiquitously used in modern research and industry to carry out a variety of chemical transformations. Stable metal-support frameworks and inertness of the carbon materials are usually taken for granted in these very useful catalytic systems. Initially, the present study was aimed to increase the efficiency of Pd/C and Pt/C catalytic systems under microwave and conventional heating.

View Article and Find Full Text PDF