Publications by authors named "Venz S"

DDI2 is an aspartic protease that cleaves polyubiquitinated substrates. Upon proteotoxic stress, DDI2 activates the transcription factor TCF11/NRF1 (NFE2L1), crucial for maintaining proteostasis in mammalian cells, enabling the expression of rescue factors, including proteasome subunits. Here, we describe the consequences of DDI2 ablation and in cells.

View Article and Find Full Text PDF

Despite recent advances in the treatment of metastatic castration-resistant prostate cancer (CRPC), treatment is inevitably hampered by the development of drug resistance. Thus, new drugs are urgently needed. We investigated the efficacy, toxicity, and mechanism of action of the marine triterpene glycoside cucumarioside A-2 (CA-2) using an in vitro CRPC model.

View Article and Find Full Text PDF

Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models.

View Article and Find Full Text PDF

Tissue sections, which are widely used in research and diagnostic laboratories and have already been examined by immunohistochemistry (IHC), may subsequently provide a resource for proteomic studies, even though only small amount of protein is available. Therefore, we established a workflow for tandem mass spectrometry-based protein profiling of IHC specimens and characterized defined brain area sections. We investigated the CA1 region of the hippocampus dissected from brain slices of adult C57BL/6J mice.

View Article and Find Full Text PDF

Microglia are the resident immune cells of the central nervous system (CNS) and play a major role in the regulation of brain homeostasis. To maintain their cellular protein homeostasis, microglia express standard proteasomes and immunoproteasomes (IP), a proteasome isoform that preserves protein homeostasis also in non-immune cells under challenging conditions. The impact of IP on microglia function in innate immunity of the CNS is however not well described.

View Article and Find Full Text PDF

MicroRNAs (miRNA) are ubiquitous non-coding RNAs that have a prominent role in cellular regulation. The expression of many miRNAs is often found deregulated in prostate cancer (PCa) and castration-resistant prostate cancer (CRPC). Although their expression can be associated with PCa and CRPC, their functions and regulatory activity in cancer development are poorly understood.

View Article and Find Full Text PDF

The role of the tRNA methyltransferase FTSJ1 in the brain is largely unknown. We analyzed whether FTSJ1-deficient mice (KO) displayed altered neuronal plasticity. We explored open field behavior (10 KO mice (aged 22-25 weeks)) and 11 age-matched control littermates (WT) and examined mean layer thickness (7 KO; 6 WT) and dendritic spines (5 KO; 5 WT) in the hippocampal area CA1 and the dentate gyrus.

View Article and Find Full Text PDF

Macrophages are cells of the innate immune system and represent an important component of the first-line defense against pathogens and tumor cells. Here, their diverse functions in inflammation and tumor defense are described, and the mechanisms, tools, and activation pathways and states applied are presented. The main focus is on the role and origin of reactive oxygen species (ROS), the important signal pathways TLR/NF-κB, and the M1/​​M2 polarization of macrophages.

View Article and Find Full Text PDF

Background/aim: Interleukin 6 (IL6) is increased in patients with progressive prostate cancer and induces its transdifferentiation to neuroendocrine prostate cancer. Neuroendocrine prostate cancer has become one of the greatest challenges in treating castration-resistant disease and is linked to poor prognosis. It is necessary to understand better the cellular events associated with IL6-mediated neuroendocrine differentiation to prevent it and identify potential new therapeutic targets.

View Article and Find Full Text PDF
Article Synopsis
  • The Warburg effect describes how tumor cells consume high levels of sugar due to their reliance on glycolysis, even in the presence of oxygen.
  • Researchers have developed new sugar-based compounds, specifically designed to target this effect, which show promise in selectively killing prostate cancer cells, even those resistant to traditional drugs.
  • The mechanism of action involves disrupting mitochondrial function, leading to the activation of processes that induce apoptosis, paving the way for potential clinical development of these compounds.
View Article and Find Full Text PDF

Treatment of castration-resistant prostate cancer (CRPC) remains challenging due to the development of drug resistance. The Warburg effect describes the ability of cancer cells to consume larger amounts of glucose compared to normal tissues. We identified derivatives of natural 1,4-naphthoquinones to be active in CRPC and further synthetically modified them via glucose conjugation to increase selectivity by Warburg effect targeting.

View Article and Find Full Text PDF

Background/aim: Renal cell carcinoma (RCC) is one of the most common tumor diseases in adults, and new specific biomarkers are urgently needed to define diagnosis and prognosis of patients with RCC as well as monitor the outcome of therapeutic interventions. The enzyme nicotinamide N-methyltransferase (NNMT) is believed to represent such a marker molecule in RCC therapy.

Materials And Methods: NNMT expression was examined by western blotting in samples from patients with RCC and in RCC cell lines.

View Article and Find Full Text PDF

Protein degradation is essential to compensate for the damaging effects of proteotoxic stress. To ensure protein and redox homeostasis in response to proteasome inhibition, the cleavage and nuclear translocation of the endoplasmic reticulum (ER)-bound transcription factor TCF11/Nrf1 () is crucial for the activation of rescue factors including the synthesis of new proteasomal subunits. Even though TCF11/Nrf1 is an essential transcription factor, the exact mechanisms by which it is activated and stabilized are not fully understood.

View Article and Find Full Text PDF

Rhizochalinin (Rhiz) is a novel marine natural sphingolipid-like compound, which shows promising in vitro and in vivo activity in human castration-resistant prostate cancer. In the present study, a global proteome screening approach was applied to investigate molecular targets and biological processes affected by Rhiz in castration-resistant prostate cancer. Bioinformatical analysis of the data predicted an antimigratory effect of Rhiz on cancer cells.

View Article and Find Full Text PDF

The angiotensin-converting enzyme 2/angiotensin (Ang)-(1-7)/Mas axis of the renin-angiotensin system often opposes the detrimental effects of the angiotensin-converting enzyme/Ang II/Ang II type 1 receptor axis and has been associated with beneficial effects on glucose homeostasis, whereas underlying mechanisms are mostly unknown. Here we investigate the effects of Ang-(1-7) and its receptor Mas on β-cell function. Isolated islets from Mas-deficient and wild-type mice were stimulated with Ang-(1-7) or its antagonists and effects on insulin secretion determined.

View Article and Find Full Text PDF

Development of drug resistance is an inevitable phenomenon in castration-resistant prostate cancer (CRPC) cells requiring novel therapeutic approaches. In this study, efficacy and toxicity of Rhizochalinin (Rhiz) - a novel sphingolipid-like marine compound - was evaluated in prostate cancer models, resistant to currently approved standard therapies. In vitro activity and mechanism of action of Rhiz were examined in the human prostate cancer cell lines PC-3, DU145, LNCaP, 22Rv1, and VCaP.

View Article and Find Full Text PDF

Background: Cisplatin-based chemotherapy is highly effective in metastasized germ cell tumours (GCT). However, 10-30 % of patients develop resistance to cisplatin, requiring salvage therapy. We investigated the in vitro activity of paclitaxel and the novel taxane cabazitaxel in cisplatin-sensitive and -resistant GCT cell lines.

View Article and Find Full Text PDF

Monanchocidin A (MonA) is a novel marine alkaloid with promising anti-cancer properties. We recently demonstrated its high efficacy in human urogenital cancers including germ cell tumors. Here, we applied a global proteome screening approach to investigate molecular targets and biological processes affected by MonA in the human cisplatin-resistant germ cell cancer cell line NCCIT-R.

View Article and Find Full Text PDF

The tumour protein D52 isoform 1 (PC-1), a member of the tumour protein D52 (TPD52) protein family, is androgen-regulated and prostate-specific expressed. Previous studies confirmed that PC-1 contributes to malignant progression in prostate cancer with an important role in castration-resistant stage. In the present work, we identified its impact in mechanisms leading to neuroendocrine (NE) transdifferentiation.

View Article and Find Full Text PDF

Despite recent advances in the treatment of metastatic castration-resistant prostate cancer (CRPC), outcome of patients remains poor due to the development of drug resistance. Thus, new drugs are urgently needed. We investigated efficacy, toxicity and mechanism of action of marine triterpene glycoside frondoside A (FrA) using CRPC cell lines in vitro and in vivo.

View Article and Find Full Text PDF

Background: Remodeling of the tumor environment and the modulation of tumor associated non-malignant cells are essential events in tumor progression. Exosomes are small membranous vesicles of 50-150 nm in diameter, which are secreted into the extracellular space and supposedly serve as vehicles for signal and effector molecules to modulate adjacent target cells. We characterized the mRNA and protein composition as well as cellular functions of prostate cancer cell-derived exosomes.

View Article and Find Full Text PDF

Monanchocidin A (MonA) is a novel alkaloid recently isolated from the marine sponge Monanchora pulchra. The compound reveals cytotoxic activity in genitourinary cancers including cisplatin-sensitive and -resistant germ cell tumor (GCT) cell lines, hormone-sensitive and castration-resistant prostate carcinoma cell lines and different bladder carcinoma cell lines. In contrast, non-malignant cells were significantly less sensitive.

View Article and Find Full Text PDF

Unlabelled: The limitations of the current prostate cancer (PCa) screening tests demands new biomarkers for early diagnosis of PCa. In this study, we aim to investigate serum autoantibody signatures as PCa specific biomarkers. PCa proteins were resolved by 2-DE and then transferred onto polyvinylidene difluoride membrane, which were subsequently incubated with either pooled serum from PCa patients or from normal controls.

View Article and Find Full Text PDF

The central importance of translational control by post-translational modification has spurred major interest in regulatory pathways that control translation. One such pathway uniquely adds hypusine to eukaryotic initiation factor 5A (eIF5A), and thereby affects protein synthesis and, subsequently, cellular proliferation through an unknown mechanism. Using a novel conditional knockout mouse model and a Caenorhabditis elegans knockout model, we found an evolutionarily conserved role for the DOHH-mediated second step of hypusine synthesis in early embryonic development.

View Article and Find Full Text PDF

Unlabelled: We analyzed the effects of all three marine alkaloids aaptamine, demethyloxyaaptamine and isoaaptamine in NT2-R, a cisplatin-resistant subline of the human embryonal carcinoma cell line NT2. All aaptamines were found to be equally effective in both cell lines, excluding cross-resistance between aaptamines and cisplatin in vitro. At the inhibitory concentration (IC50), aaptamine exerted an antiproliferative effect, whereas demethyloxyaaptamine and isoaaptamine were strong inducers of apoptosis.

View Article and Find Full Text PDF