Immortalized liver cell lines and primary hepatocytes are currently used as in vitro models for hepatotoxic drug screening. However, a decline in the viability and functionality of hepatocytes with time is an important limitation of these culture models. Advancements in tissue engineering techniques have allowed us to overcome this challenge by designing suitable scaffolds for maintaining viable and functional primary hepatocytes for a longer period of time in culture.
View Article and Find Full Text PDFBiomimetics (Basel)
September 2022
The major goal of liver tissue engineering is to reproduce the phenotype and functions of liver cells, especially primary hepatocytes ex vivo. Several strategies have been explored in the recent past for culturing the liver cells in the most apt environment using biological scaffolds supporting hepatocyte growth and differentiation. Nanofibrous scaffolds have been widely used in the field of tissue engineering for their increased surface-to-volume ratio and increased porosity, and their close resemblance with the native tissue extracellular matrix (ECM) environment.
View Article and Find Full Text PDFParticle synthesis has seen significant advances in current trends. However, the synthesis of metal particles without oxidation is a challenge for researchers. The current study presents a straightforward, convenient, and convincing approach for manufacturing copper (Cu) particles free of surface oxide.
View Article and Find Full Text PDFElectrospinning is a promising technique for the fabrication of bioscaffolds in tissue engineering applications. Pertaining issues of multiple polymer jets and bending instabilities result in random paths which lend poor controllability over scaffolds morphology for affecting the porosity and mechanical stability. The present study alleviates these challenges by demonstrating a novel self-directing single jet taking a specifically patterned path to deposit fibers into circular and uniform scaffolds without tuning any externally controlled parameters.
View Article and Find Full Text PDFCurrently, pharmaceutical research is directed wide range for developing new drugs for oral administration to target disease. Acyclovir formulation is having common issues of short half-life and poor permeability, causing messy treatment which results in patient incompliance. The present study formulates a lipid polymeric hybrid nanoparticles for antiviral acyclovir (ACV) agent with Phospholipon® 90G (lecithin), chitosan, and polyethylene glycol (PEG) to improve controlled release of the drugs.
View Article and Find Full Text PDFAloe vera (AV) and tetracycline hydrochloride (TCH) exhibit significant properties such as anti-inflammatory, antioxidant and anti-bacterial activities to facilitate skin tissue engineering. The present study aims to develop poly-ε-caprolactone (PCL)/ AV containing curcumin (CUR), and TCH loaded hybrid nanofibrous scaffolds to validate the synergistic effect on the fibroblast proliferation and antimicrobial activity against Gram-positive and Gram-negative bacteria for wound healing. PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH hybrid nanofibrous mats were fabricated using an electrospinning technique and were characterized for surface morphology, the successful incorporation of active compounds, hydrophilicity and the mechanical property of nanofibers.
View Article and Find Full Text PDFGuided bone regeneration (GBR) has been established to be an effective method for the repair of defective tissues, which is based on isolating bone defects with a barrier membrane for faster tissue reconstruction. The aim of the present study is to develop poly (hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/fibrinogen (FG)/bredigite (BR) membranes with applicability in GBR. BR nanoparticles were synthesized through a sol-gel method and characterized using transmission electron microscopy and X-ray diffractometer.
View Article and Find Full Text PDFFar-flung evolution in tissue engineering enabled the development of bioactive and biodegradable materials to generate biocomposite nanofibrous scaffolds for bone repair and replacement therapies. Polymeric bioactive nanofibers are to biomimic the native extracellular matrix (ECM), delivering tremendous regenerative potentials for drug delivery and tissue engineering applications. It's been known from few decades that Zinc oxide (ZnO) nanoparticles are enhancing bone growth and providing proliferation of osteoblasts when incorporated with hydroxyapatite (HAp).
View Article and Find Full Text PDFAim: Atherosclerosis is a common cardiovascular disease causing medical problems globally leading to coronary artery bypass surgery. The present study is to fabricate core/shell nanofibers to encapsulate VEGF for the differentiation of mesenchymal stem cells (MSCs) into smooth muscle cells to develop vascular grafts.
Materials & Methods: The fabricated core/shell nanofibers contained polycaprolactone/gelatin as the shell, and silk fibroin/VEGF as the core materials.
Bioceramic nanoparticles with high specific surface area often tend to agglomerate in the polymer matrix, which results in undesirable mechanical properties of the composites and poor cell spreading and attachment. In the present work, bredigite (BR) nanoparticles were modified with an organosilane coupling agent, 3-glycidoxypropyltrimethoxysilane (GPTMS), to enhance its dispersibility in the polymer matrix. The polyhydroxybutyrate-co-hydroxyvaletare (PHBV) nanofibrous scaffolds containing either bredigite or GPTMS-modified bredigite (G-BR) nanoparticles were fabricated using electrospinning technique and characterized using scanning electron microscopy, transmission electron microscopy, and tensile strength.
View Article and Find Full Text PDFA biomimetic Zein polydopamine based nanofiber scaffold was fabricated to deliver bone morphogenic protein-2 (BMP-2) peptide conjugated titanium dioxide nanoparticles in a sustained manner for investigating its osteogenic differentiation potential. To prolong its retention time at the target site, BMP-2 peptide has been conjugated to titanium dioxide nanoparticles owing to its high surface to volume ratio. The effect of biochemical cues from BMP-2 peptide and nanotopographical stimulation of electrospun Zein polydopamine nanofiber were examined for its enhanced osteogenic expression of human fetal osteoblast cells.
View Article and Find Full Text PDFGlass-ionomer cements (GICs) have been widely used for over forty years, because of their desirable properties in dentistry. The most important advantages of the GICs are associated with their ability to release long-term antimicrobial agents. However, GICs used as restorative materials have still lots of challenges due to their secondary caries and low mechanical properties.
View Article and Find Full Text PDFRecent advances in bioprinting technology have been used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. Organ printing and biofabrication provides great potential for the freeform fabrication of 3D living organs using cellular spheroids, biocomposite nanofibers, or bioinks as building blocks for regenerative therapy. Vascularization is often identified as a main technological barrier for building 3D organs in tissue engineering.
View Article and Find Full Text PDFMelanoma is the most aggressive type of skin cancer and has very high rates of mortality. An early stage melanoma can be surgically removed, with a survival rate of 99%. This literature review intends to elucidate the possibilities to treat melanoma skin cancer using hybrid nanofibers developed by advanced electrospinning process.
View Article and Find Full Text PDFPharmaceutical industries spend more money in developing new and efficient methods for delivering successful drugs for anticancer therapy. Electrospun nanofibers and nanoparticles loaded with drugs have versatile biomedical applications ranging from wound healing to anticancer therapy. We aimed to attempt for fabricating elastomeric poly (l-lactic acid-co-ε-caprolactone) (PLACL) with Aloe Vera (AV), magnesium oxide (MgO) nanoparticles, curcumin (CUR) and β-cyclodextrin (β-CD) composite nanofibers to control the growth of MCF-7 cells for breast cancer therapy.
View Article and Find Full Text PDFElectrospinning of naturally occurring biopolymers for biological applications requires postspinning cross-linking for endurance in protease-rich microenvironments and prevention of rapid dissolution. The most commonly used cross-linkers often generate cytotoxic byproducts, which necessitate high concentrations or time-consuming procedures. Herein, we report the addition of "safe" catecholamine cross-linkers to collagen or gelatin dope solutions followed by electrospinning yielded junction-containing nanofibrous mats.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2016
Oxide-free silicon chemistry has been widely studied using wet-chemistry methods, but for emerging applications such as molecular electronics on silicon, nanowire-based sensors, and biochips, these methods may not be suitable as they can give rise to defects due to surface contamination, residual solvents, which in turn can affect the grafted monolayer devices for practical applications. Therefore, there is a need for a cleaner, reproducible, scalable, and environmentally benign monolayer grafting process. In this work, monolayers of alkylthiols were deposited on oxide-free semiconductor surfaces using supercritical carbon dioxide (SCCO2) as a carrier fluid owing to its favorable physical properties.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
November 2016
Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM) and including new biomaterials could produce a better substitute for new bone tissue formation.
View Article and Find Full Text PDFBone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca(2+). The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties.
View Article and Find Full Text PDFSkin is a very complex organ and hence designing a bioengineered skin model replicating the essential physiological characteristics for replacing the diseased or damaged parts has been a challenging goal for many. Newer technologies for satisfying most of the criteria are being attempted with the copious efforts of biologists, engineers, physiologists, using multitude of features in combination. Amongst them nanotechnology based biomaterials have gained prominence owing to the enhanced pharmacokinetics, bio-distribution profile, extended half-life and reduced side effects.
View Article and Find Full Text PDFGenerating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression.
View Article and Find Full Text PDFCompelling evidences accumulated over the years have proven stem cells as a promising source for regenerative medicine. However, the inadequacy with the design of delivery modalities has prolonged the research in realizing an ideal cell-based approach for the regeneration of infarcted myocardium. Currently, some modest improvements in cardiac function have been documented in clinical trials with stem cell treatments, although regenerating a fully functional myocardium remains a dream for cardiac surgeons.
View Article and Find Full Text PDF