Publications by authors named "Ventzislava A Hristova"

We characterized the longitudinal serum protein signatures of women 6 and 10 years after gestational diabetes mellitus (GDM) to identify factors associated with the development of type 2 diabetes mellitus (T2D) and prediabetes in this at-risk post-GDM population, aiming to discover potential biomarkers for early diagnosis and prevention of T2D. Our study identified 75 T2D-associated serum proteins and 23 prediabetes-associated proteins, some of which were validated in an independent T2D cohort. Machine learning (ML) performed on the longitudinal proteomics highlighted protein signatures associated with progression to post-GDM diabetes.

View Article and Find Full Text PDF

Integrating human genomics and proteomics can help elucidate disease mechanisms, identify clinical biomarkers and discover drug targets. Because previous proteogenomic studies have focused on common variation via genome-wide association studies, the contribution of rare variants to the plasma proteome remains largely unknown. Here we identify associations between rare protein-coding variants and 2,923 plasma protein abundances measured in 49,736 UK Biobank individuals.

View Article and Find Full Text PDF

Rationale: Pulmonary surfactant is vital for lung homeostasis as it reduces surface tension to prevent alveolar collapse and provides essential immune-regulatory and antipathogenic functions. Previous studies demonstrated dysregulation of some individual surfactant components in COPD. We investigated relationships between COPD disease measures and dysregulation of surfactant components to gain new insights into potential disease mechanisms.

View Article and Find Full Text PDF

Phosphorylation of MDM2 by ATM upon DNA damage is an important mechanism for deregulating MDM2, thereby leading to p53 activation. ATM phosphorylates multiple residues near the RING domain of MDM2, but the underlying molecular basis for deregulation remains elusive. Here we show that Ser429 phosphorylation selectively enhances the ubiquitin ligase activity of MDM2 homodimer but not MDM2-MDMX heterodimer.

View Article and Find Full Text PDF

Cancer is often diagnosed at late stages when the chance of cure is relatively low and although research initiatives in oncology discover many potential cancer biomarkers, few transition to clinical applications. This review addresses the current landscape of cancer biomarker discovery and translation with a focus on proteomics and beyond. Areas covered: The review examines proteomic and genomic techniques for cancer biomarker detection and outlines advantages and challenges of integrating multiple omics approaches to achieve optimal sensitivity and address tumor heterogeneity.

View Article and Find Full Text PDF

RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B.

View Article and Find Full Text PDF

Cullin ring ligases (CRLs) constitute the largest group of RING finger ubiquitin ligases. Two recent studies in Molecular Cell describe glomulin as a CRL1 inhibitor that blocks interactions with its ubiquitin-conjugating enzyme (E2) (Duda et al., 2012; Tron et al.

View Article and Find Full Text PDF

Missense mutations in park2, encoding the parkin protein, account for approximately 50% of autosomal recessive juvenile Parkinson disease (ARJP) cases. Parkin belongs to the family of RBR (RING-between-RING) E3 ligases involved in the ubiquitin-mediated degradation and trafficking of proteins such as Pael-R and synphillin-1. The proposed architecture of parkin, based largely on sequence similarity studies, consists of N-terminal ubiquitin-like and C-terminal RBR domains.

View Article and Find Full Text PDF

Mutations in Parkin are one of the predominant hereditary factors found in patients suffering from autosomal recessive juvenile Parkinsonism. Parkin is a member of the E3 ubiquitin ligase family that is defined by a tripartite RING1-in-between-ring (IBR)-RING2 motif. In Parkin, the IBR domain has been shown to augment binding of the E2 proteins UbcH7 and UbcH8, and the subsequent ubiquitination of the proteins synphilin-1, Sept5, and SIM2.

View Article and Find Full Text PDF