Publications by authors named "Venne A"

When estimating full-body motion from experimental data, inverse kinematics followed by inverse dynamics does not guarantee dynamical consistency of the resulting motion, especially in movements where the trajectory depends heavily on the initial state, such as in free-fall. Our objective was to estimate dynamically consistent joint kinematics and kinetics of complex aerial movements. A 42-degrees-of-freedom model with 95 markers was personalised for five elite trampoline athletes performing various backward and forward twisting somersaults.

View Article and Find Full Text PDF

Proteases are in the center of many diseases, and consequently, proteases and their substrates are important drug targets as represented by an estimated 5-10% of all drugs under development. Mass spectrometry has been an indispensable tool for the discovery of novel protease substrates, particularly through the proteome-scale enrichment of so-called N-terminal peptides representing endogenous protein N termini. Methods such as combined fractional diagonal chromatography (COFRADIC) and, later, terminal amine isotopic labeling of substrates (TAILS) have revealed numerous insights into protease substrates and consensus motifs.

View Article and Find Full Text PDF

Mitochondria drive apoptosis by releasing pro-apoptotic proteins that promote caspase activation in the cytosol. The rhomboid protease PARL, an intramembrane cleaving peptidase in the inner membrane, regulates mitophagy and plays an ill-defined role in apoptosis. Here, we employed PARL-based proteomics to define its substrate spectrum.

View Article and Find Full Text PDF

Chemical cross-linking of proteins is an emerging field with huge potential for the structural investigation of proteins and protein complexes. Owing to the often relatively low yield of cross-linking products, their identification in complex samples benefits from enrichment procedures prior to mass spectrometry analysis. So far, this is mainly accomplished by using biotin moieties in specific cross-linkers or by applying strong cation exchange chromatography (SCX) for a relatively crude enrichment.

View Article and Find Full Text PDF

We applied an extended charge-based fractional diagonal chromatography (ChaFRADIC) workflow to analyze the N-terminal proteome of Arabidopsis thaliana seedlings. Using iTRAQ protein labeling and a multi-enzyme digestion approach including trypsin, GluC, and subtilisin, a total of 200 μg per enzyme, and measuring only one third of each ChaFRADIC-enriched fraction by LC-MS, we quantified a total of 2791 unique N-terminal peptides corresponding to 2249 different unique N-termini from 1270 Arabidopsis proteins. Our data indicate the power, reproducibility, and sensitivity of the applied strategy that might be applicable to quantify proteolytic events from as little as 20 μg of protein per condition across up to eight different samples.

View Article and Find Full Text PDF

Most mitochondrial proteins contain an N-terminal targeting signal that is removed by specific proteases following import. In plant mitochondria, only mitochondrial processing peptidase (MPP) has been characterized to date. Therefore, we sought to determine the substrates and cleavage sites of the Arabidopsis thaliana homologues to the yeast Icp55 and Oct1 proteins, using the newly developed ChaFRADIC method for N-terminal protein sequencing.

View Article and Find Full Text PDF

Performing a well thought-out proteomics data analysis can be a daunting task, especially for newcomers to the field. Even researchers experienced in the proteomics field can find it challenging to follow existing publication guidelines for MS-based protein identification and characterization in detail. One of the primary goals of bioinformatics is to enable any researcher to interpret the vast amounts of data generated in modern biology, by providing user-friendly and robust end-user applications, clear documentation, and corresponding teaching materials.

View Article and Find Full Text PDF

Beside gene expression and translational control, which are relatively slow, PTM of proteins represents the major level of regulation, from very fast and reversible to slow or irreversible processes. PTMs affect protein structure and act as molecular switches, which regulate the interaction of proteins with DNA, cofactors, lipids, and other proteins. In the past few years, evidence for extensive crosstalk between PTMs has accumulated.

View Article and Find Full Text PDF

We present a novel straightforward method for enrichment of N-terminal peptides, utilizing charge-based fractional diagonal chromatography (ChaFRADIC). Our method is robust, easy to operate, fast, specific, and more sensitive than existing methods, enabling the differential quantitation of 1459 nonredundant N-terminal peptides between two S. cerevisiae samples within 10 h of LC-MS, starting from only 50 μg of protein per condition and analyzing only 40% of the obtained fractions.

View Article and Find Full Text PDF

Study subjects were French-Canadian women with ductal carcinoma in situ (DCIS) or invasive breast cancer (incident or prevalent) who were treated and followed at a single breast cancer clinic affiliated with the Research Center of University of Montreal (CRCHUM), who were either aged less than 50 years at diagnosis or who were 50 years or older and with at least two affected first- or second-degree relatives. Subjects were tested for six founder mutations (three in BRCA1 and three in BRCA2); 1093 eligible cases were tested. Of these, 56 women (5.

View Article and Find Full Text PDF

Selective allodepletion is a strategy to eliminate host-reactive donor T cells from hematopoietic stem cell allografts to prevent graft-versus-host disease while conserving useful donor immune functions. To overcome fluctuations in activation-based surface marker expression and achieve a more consistent and effective allodepletion, we investigated a photodepletion process targeting activation-based changes in p-glycoprotein that result in an altered efflux of the photosensitizer TH9402. Expanded lymphocytes, generated using anti-CD3 and IL-2, were cocultured with responder cells from HLA-matched or -mismatched donors.

View Article and Find Full Text PDF

Purpose: Previous studies have demonstrated that Pluronic block copolymers hypersensitize multiple drug resistant (MDR) cancer cells, drastically increasing the cytotoxic effects of anthracyclines and other anticancer cytotoxics in these cells. This work evaluates the dose dependent effects of these polymers on (i) doxorubicin (Dox) cytotoxicity and (ii) cellular accumulation of P-glycoprotein probe, rhodamine 123 (R123) in MDR cancer cells.

Methods: Dox cytotoxicity and R123 accumulation studies are performed on monolayers of drug-sensitive (KB, MCF-7, Aux-B1) and MDR (KBv, MCF-7/ADR, CHrC5) cells.

View Article and Find Full Text PDF

The present study demonstrated that poly(oxypropylene) and poly(oxyethylene) block copolymer pluronic L61 (L61)-hypersensitized multidrug-resistant CHRC5 Chinese hamster ovary cells and MCF-7/ADR human breast carcinoma cells to the cytotoxic action of doxorubicin (Dox). CHRC5 and MCF-7/ADR cells manifested 290- and 700-fold increases, respectively, in their sensitivity to Dox/L61 formulation compared with free Dox. Their sensitive counterparts Aux-B1 and MCF-7 displayed only marginal or no increase at all in their response to Dox/L61.

View Article and Find Full Text PDF