Publications by authors named "Venkatraman Ravi Kumar"

Article Synopsis
  • * The mechanisms of this photocatalytic process have been debated, particularly the role of different species involved, like the proposed free chloride radical.
  • * Femtosecond time-resolved spectroscopy experiments reveal that the long-lived species [Fe(II) ← Cl]* is crucial for oxidizing substrates and regenerating the catalyst, providing insights for designing more efficient earth-abundant photocatalysts.
View Article and Find Full Text PDF

Photochemical reactions are increasingly being used for chemical and materials synthesis, for example, in photoredox catalysis, and generally involve photoexcitation of molecular chromophores dissolved in a liquid solvent. The choice of solvent influences the outcomes of the photochemistry because solute-solvent interactions modify the energies of and crossings between electronic states of the chromophores, and they affect the evolving structures of the photoexcited molecules. Ultrafast laser spectroscopy methods with femtosecond to picosecond time resolution can resolve the dynamics of these photoexcited molecules as they undergo structural and electronic changes, relax back to the ground state, dissipate their excess internal energy to the surrounding solvent, or undergo photochemical reactions.

View Article and Find Full Text PDF

The excited-state dynamics of photoexcited diethylamino hydroxybenzoyl hexyl benzoate (DHHB), a UVA absorber widely used in sunscreen formulations, are studied with transient electronic and vibrational absorption spectroscopy methods in four different solvents. In the polar solvents methanol, dimethyl sulfoxide (DMSO), and acetonitrile, strong stimulated emission (SE) is observed at early time delays after photoexcitation at a near-UV wavelength of λ = 360 nm, and decays with time constants of 420 fs in methanol and 770 fs in DMSO. The majority (∼95%) of photoexcited DHHB returns to the ground state with time constants of 15 ps in methanol and 25 ps in DMSO.

View Article and Find Full Text PDF

Dimethyl sulfoxide (DMSO) is a common cosolvent and cryopreservation agent used to freeze cells and tissues. DMSO alters the H-bond structure of water, but its interactions with biomolecules and, specifically, with biological interfaces remain poorly understood. Here we investigate the effects of DMSO on the H-bond dynamics at the lipid-water interface using a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations.

View Article and Find Full Text PDF

Ring-strain in cyclic organic molecules is well-known to influence their chemical reactivity. Here, we examine the consequence of ring-strain for competing photochemical pathways that occur on picosecond timescales. The significance of Norrish Type-I photochemistry is explored for three cyclic ketones in cyclohexane solutions at ultraviolet (UV) excitation wavelengths from 255-312 nm, corresponding to an π* ← excitation to the lowest excited singlet state (S).

View Article and Find Full Text PDF

A long-standing ambition of photochemists is to excite species selectively in a complex liquid solution and in turn instigate a controlled chemical reaction. Benzophenone (Bzp) has been studied over six decades as a model system for understanding the photophysics and photochemistry of organic chromophores. Herein, we exploit the red-edge excitation effect to demonstrate that by subensemble selective excitation of Bzp molecules, either coordinated or noncoordinated to phenol through hydrogen bonding in a dichloromethane solution, the rate of an H atom abstraction reaction can be accelerated by a factor of ∼40.

View Article and Find Full Text PDF

Solvation plays a critical role in various physicochemical and biological processes. Here, the rate of intersystem crossing (ISC) of benzophenone from its S(nπ*) state to its triplet manifold of states is shown to be modified by hydrogen-bonding interactions with protic solvent molecules. We selectively photoexcite benzophenone with its carbonyl group either solvent coordinated or uncoordinated by tuning the excitation wavelength to the band center (λ = 340 nm) or the long-wavelength edge (λ = 380 nm) of its π* ← n absorption band.

View Article and Find Full Text PDF

Excited state ultrafast conformational reorganization is recognized as an important phenomenon that facilitates light-induced functions of many molecular systems. This report describes the femtosecond and picosecond conformational relaxation dynamics of middle-ring and terminal ring twisted conformers of the acetylene π-conjugated system bis(phenylethynyl)benzene, a model system for molecular wires. Through excitation wavelength dependent, femtosecond-transient absorption measurements, we found that the middle-ring and terminal ring twisted conformers relax at femtosecond (400-600 fs) and picosecond (20-24 ps) time scales, respectively.

View Article and Find Full Text PDF

The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents.

View Article and Find Full Text PDF

Solvent plays a key role in diverse physico-chemical and biological processes. Therefore, understanding solute-solvent interactions at the molecular level of detail is of utmost importance. A comprehensive solvatochromic analysis of benzophenone (Bzp) was carried out in various solvents using Raman and electronic spectroscopy, in conjunction with Density Functional Theory (DFT) calculations of supramolecular solute-solvent clusters generated using classical Molecular Dynamics Simulations (c-MDSs).

View Article and Find Full Text PDF

The photochemistry of aromatic ketones plays a key role in various physicochemical and biological processes, and solvent polarity can be used to tune their triplet state properties. Therefore, a comprehensive analysis of the conformational structure and the solvent polarity induced energy level reordering of the two lowest triplet states of 9,10-phenanthrenequinone (PQ) was carried out using nanosecond-time-resolved absorption (ns-TRA), time-resolved resonance Raman (TR(3)) spectroscopy, and time dependent-density functional theory (TD-DFT) studies. The ns-TRA of PQ in acetonitrile displays two bands in the visible range, and these two bands decay with similar lifetime at least at longer time scales (μs).

View Article and Find Full Text PDF

Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π(1)*; S1 state) and the shorter (1π-π(1)*; S2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively.

View Article and Find Full Text PDF