Background: Oesophageal adenocarcinoma (OAC) is a highly heterogeneous cancer with poor survival. Standard curative treatment is chemotherapy with or without radiotherapy followed by oesophagectomy. Genomic heterogeneity is a feature of OAC and has been linked to treatment resistance.
View Article and Find Full Text PDFGermline-derived epitopes shape tumor development through immunoediting.
View Article and Find Full Text PDFA plateau in treatment effect can be seen for the current 'one-size-fits-all' approach to oesophageal adenocarcinoma (OAC) management using neoadjuvant chemoradiotherapy (nCRT) or chemotherapy (nCT). In OAC, the tumour microenvironment (TME) is largely immunosuppressed, however a subgroup of patients with an immune-inflamed TME exist and show improved outcomes. We aimed to understand the overall immune-based mechanisms underlying treatment responses and patient outcomes in OAC, and in relation to neoadjuvant therapy modality.
View Article and Find Full Text PDFCells within the tumour microenvironment (TME) can impact tumour development and influence treatment response. Computational approaches have been developed to deconvolve the TME from bulk RNA-seq. Using scRNA-seq profiling from breast tumours we simulate thousands of bulk mixtures, representing tumour purities and cell lineages, to compare the performance of nine TME deconvolution methods (BayesPrism, Scaden, CIBERSORTx, MuSiC, DWLS, hspe, CPM, Bisque, and EPIC).
View Article and Find Full Text PDFOesophageal adenocarcinoma is a poor prognosis cancer and the molecular features underpinning response to treatment remain unclear. We investigate whole genome, transcriptomic and methylation data from 115 oesophageal adenocarcinoma patients mostly from the DOCTOR phase II clinical trial (Australian New Zealand Clinical Trials Registry-ACTRN12609000665235), with exploratory analysis pre-specified in the study protocol of the trial. We report genomic features associated with poorer overall survival, such as the APOBEC mutational and RS3-like rearrangement signatures.
View Article and Find Full Text PDFUncertainty estimation is crucial for understanding the reliability of deep learning (DL) predictions, and critical for deploying DL in the clinic. Differences between training and production datasets can lead to incorrect predictions with underestimated uncertainty. To investigate this pitfall, we benchmarked one pointwise and three approximate Bayesian DL models for predicting cancer of unknown primary, using three RNA-seq datasets with 10,968 samples across 57 cancer types.
View Article and Find Full Text PDFBackground: Brain cancer is the leading cause of cancer-related death in children. Early detection and serial monitoring are essential for better therapeutic outcomes. Liquid biopsy has recently emerged as a promising approach for detecting these tumors by screening body fluids for the presence of circulating tumor DNA (ctDNA).
View Article and Find Full Text PDFBackground: Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials.
Methods: We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study.
We concurrently examine the whole genome, transcriptome, methylome, and immune cell infiltrates in baseline tumors from 77 patients with advanced cutaneous melanoma treated with anti-PD-1 with or without anti-CTLA-4. We show that high tumor mutation burden (TMB), neoantigen load, expression of IFNγ-related genes, programmed death ligand expression, low PSMB8 methylation (therefore high expression), and T cells in the tumor microenvironment are associated with response to immunotherapy. No specific mutation correlates with therapy response.
View Article and Find Full Text PDFTo increase understanding of the genomic landscape of acral melanoma, a rare form of melanoma occurring on palms, soles or nail beds, whole genome sequencing of 87 tumors with matching transcriptome sequencing for 63 tumors was performed. Here we report that mutational signature analysis reveals a subset of tumors, mostly subungual, with an ultraviolet radiation signature. Significantly mutated genes are BRAF, NRAS, NF1, NOTCH2, PTEN and TYRP1.
View Article and Find Full Text PDFCritical immune-suppressive pathways beyond programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) require greater attention. Nectins and nectin-like molecules might be promising targets for immunotherapy, since they play critical roles in cell proliferation and migration and exert immunomodulatory functions in pathophysiological conditions. Here, we show CD155 expression in both malignant cells and tumor-infiltrating myeloid cells in humans and mice.
View Article and Find Full Text PDFTechnological innovation and increased affordability have contributed to the widespread adoption of genome sequencing technologies in biomedical research. In particular large cancer research consortia have embraced next generation sequencing, and have used the technology to define the somatic mutation landscape of multiple cancer types. These studies have primarily utilised the Illumina HiSeq platforms.
View Article and Find Full Text PDF