Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.
View Article and Find Full Text PDFAnn Am Thorac Soc
August 2023
To identify barriers and opportunities for Ph.D., basic and translational scientists to be fully integrated into clinical units.
View Article and Find Full Text PDFGAS41 is an emerging oncogene overexpressed and implicated in multiple cancers, including non-small cell lung cancer (NSCLC). GAS41 is a dimeric protein that contains the YEATS domain, which is involved in the recognition of lysine-acylated histones. Here, we report the development of GAS41 YEATS inhibitors by employing a fragment-based screening approach.
View Article and Find Full Text PDFAs the recognition between natural killer (NK) cells and cancer cells does not require antigen presentation, NK cells are being actively studied for use in adoptive cell therapies in the rapidly evolving armamentarium of cancer immunotherapy. In addition to utilizing NK cells, recent studies have shown that exosomes derived from NK cells also exhibit antitumor properties. Furthermore, these NK cell-derived exosomes exhibit higher stability, greater modification potentials and less immunogenicity compared to NK cells.
View Article and Find Full Text PDFLimitations of checkpoint inhibitor cancer immunotherapy include induction of autoimmune syndromes and resistance of many cancers. Since CD318, a novel CD6 ligand, is associated with the aggressiveness and metastatic potential of human cancers, we tested the effect of an anti-CD6 monoclonal antibody, UMCD6, on killing of cancer cells by human lymphocytes. UMCD6 augmented killing of breast, lung, and prostate cancer cells through direct effects on both CD8+ T cells and NK cells, increasing cancer cell death and lowering cancer cell survival in vitro more robustly than monoclonal antibody checkpoint inhibitors that interrupt the programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) axis.
View Article and Find Full Text PDFLung cancer remains the leading cause of cancer-related death in the United States. Although the alveolar macrophage (AM) comprises the major resident immune cell in the lung, few studies have investigated its role in lung cancer development. We recently discovered a potentially novel mechanism wherein AMs regulate STAT-induced inflammatory responses in neighboring epithelial cells (ECs) via secretion and delivery of suppressors of cytokine signaling 3 (SOCS3) within extracellular vesicles (EVs).
View Article and Find Full Text PDFCysteinyl leukotrienes (cys-LTs) are proinflammatory mediators that enhance vascular permeability through distinct receptors (CysLTRs). We found that CysLTR regulates angiogenesis in isolated mouse endothelial cells (ECs) and in Matrigel implants in WT mice and enhances EC contraction and permeability via the Rho-dependent myosin light chain 2 and vascular endothelial (VE)-cadherin axis. Since solid tumors utilize aberrant angiogenesis for their growth and metastasis and their vessels exhibit vascular hyperpermeability, we hypothesized that CysLTR, via its actions on the endothelium, might regulate tumor growth.
View Article and Find Full Text PDFDuring epithelial-mesenchymal transition (EMT) epithelial cancer cells transdifferentiate into highly motile, invasive, mesenchymal-like cells, giving rise to disseminating tumor cells. Few of these disseminated cells successfully metastasize. Immune cells and inflammation in the tumor microenvironment were shown to drive EMT, but few studies investigated the consequences of EMT for tumor immunosurveillance.
View Article and Find Full Text PDFArginine, a cationic amino acid is known to stabilize proteins under harsh conditions. It is widely used to stabilize protein aggregation, and to correct protein folding during protein production. Hence it would be a good therapeutic candidate for treating protein aggregation related diseases.
View Article and Find Full Text PDFBackground: Circulating tumor cells (CTCs) have shown prognostic relevance in many cancer types. However, the majority of current CTC capture methods rely on positive selection techniques that require a priori knowledge about the surface protein expression of disseminated CTCs, which are known to be a dynamic population.
Methods: We developed a microfluidic CTC capture chip that incorporated a nanoroughened glass substrate for capturing CTCs from blood samples.
Microenvironments that tumor cells encounter are different during the stages of cancer progression-primary tumor, metastasis, and at the metastatic site. This suggests potential differences in immune surveillance of primary tumor and metastasis. Epithelial-mesenchymal transition (EMT) is a key reversible process in which cancer cells transition into highly motile and invasive cells for dissemination.
View Article and Find Full Text PDFMyofibroblasts are crucial to the pathogenesis of tissue fibrosis. Their formation of stress fibers results in the release of myocardin-related transcription factor (MRTF), a transcriptional coactivator of serum response factor (SRF). MRTF-A (Mkl1)-deficient mice are protected from lung fibrosis.
View Article and Find Full Text PDFIntroduction: Post influenza pneumonia is a leading cause of mortality and morbidity, with mortality rates approaching 60% when bacterial infections are secondary to multi-drug resistant (MDR) pathogens. Staphylococcus aureus, in particular community acquired MRSA (cMRSA), has emerged as a leading cause of post influenza pneumonia.
Hypothesis: Linezolid (LZD) prevents acute lung injury in murine model of post influenza bacterial pneumonia.
In cancer cells, the process of epithelial-mesenchymal transition (EMT) confers migratory and invasive capacity, resistance to apoptosis, drug resistance, evasion of host immune surveillance and tumor stem cell traits. Cells undergoing EMT may represent tumor cells with metastatic potential. Characterizing the EMT secretome may identify biomarkers to monitor EMT in tumor progression and provide a prognostic signature to predict patient survival.
View Article and Find Full Text PDFTumors arise and progress in immunocompetent hosts presumably by activating tolerance mechanisms critical for normal homeostasis. Host immune cells can mount anti-tumor responses by activation of Toll-like receptors (TLRs). However, emerging data suggests that molecules that negatively regulate TLRs are exploited by tumors to induce tolerance and mitigate the host immunosurveillance.
View Article and Find Full Text PDFBackground: Acquisition of mesenchymal phenotype by epithelial cells by means of epithelial-mesenchymal transition (EMT) is considered as an early event in the multistep process of tumor metastasis. Therefore, inhibition of EMT might be a rational strategy to prevent metastasis.
Methods: Using the global gene expression profile from a cell culture model of transforming growth factor-β (TGF-β)-induced EMT, we identified potential EMT inhibitors.
Fibrotic obliteration of the small airways leading to progressive airflow obstruction, termed bronchiolitis obliterans syndrome (BOS), is the major cause of poor outcomes after lung transplantation. We recently demonstrated that a donor-derived population of multipotent mesenchymal stem cells (MSCs) can be isolated from the bronchoalveolar lavage (BAL) fluid of human lung transplant recipients. Herein, we study the organ specificity of these cells and investigate the role of local mesenchymal progenitors in fibrogenesis after lung transplantation.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPAR)-γ belongs to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. It is a mediator of adipocyte differentiation, regulates lipid metabolism and macrophage function. The ligands of PPAR-γ have long been in the clinic for the treatment of type II diabetes and have a very low toxicity profile.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) was shown to confer tumor cells with abilities essential for metastasis, including migratory phenotype, invasiveness, resistance to apoptosis, evading immune surveillance, and tumor stem cell traits. Therefore, inhibition of EMT can be an important therapeutic strategy to inhibit tumor metastasis. Here, we show that activation of peroxisome proliferator-activated receptor γ (PPAR-γ) inhibits transforming growth factor β (TGF-β)-induced EMT in lung cancer cells and prevents metastasis by antagonizing Smad3 function.
View Article and Find Full Text PDFBackground: The ability to selectively detect and target cancer cells that have undergone an epithelial-mesenchymal transition (EMT) may lead to improved methods to treat cancers such as pancreatic cancer. The remodeling of cellular glycosylation previously has been associated with cell differentiation and may represent a valuable class of molecular targets for EMT.
Methodology/principal Findings: As a first step toward investigating the nature of glycosylation alterations in EMT, we characterized the expression of glycan-related genes in three in-vitro model systems that each represented a complementary aspect of pancreatic cancer EMT.
One of the more insidious outcomes of patients who survive severe sepsis is profound immunosuppression. In this study, we addressed the hypothesis that post septic immune defects were due, in part, to the presence and/or expansion of regulatory T cells (Tregs). After recovery from severe sepsis, mice exhibited significantly higher numbers of Tregs, which exerted greater in vitro suppressive activity compared with controls.
View Article and Find Full Text PDFMotivation: The elucidation of biological concepts enriched with differentially expressed genes has become an integral part of the analysis and interpretation of genomic data. Of additional importance is the ability to explore networks of relationships among previously defined biological concepts from diverse information sources, and to explore results visually from multiple perspectives. Accomplishing these tasks requires a unified framework for agglomeration of data from various genomic resources, novel visualizations, and user functionality.
View Article and Find Full Text PDF