Introduction: Solid cancers Myeloid cells are prevalent in solid cancers, but they frequently exhibit an anti-inflammatory pro-tumor phenotype that contribute to the immunosuppressive tumor microenvironment (TME), which hinders the effectiveness of cancer immunotherapies. Myeloid cells' natural ability of tumor trafficking makes engineered myeloid cell therapy an intriguing approach to tackle the challenges posed by solid cancers, including tumor infiltration, tumor cell heterogenicity and the immunosuppressive TME. One such engineering approach is to target the checkpoint molecule PD-L1, which is often upregulated by solid cancers to evade immune responses.
View Article and Find Full Text PDFInflammation is an integral part of autoimmune diseases, which are caused by dysregulation of the immune system. This dysregulation involves an imbalance between pro-inflammatory versus anti-inflammatory mediators. These mediators include various cytokines and chemokines; defined subsets of T helper/T regulatory cells, M1/M2 macrophages, activating/tolerogenic dendritic cells, and antibody-producing/regulatory B cells.
View Article and Find Full Text PDFAdoptive cellular therapies are making major strides in the treatment of cancer, both for hematologic and solid tumors. These cellular products include chimeric antigen receptor T cells and T-cell receptor-modified T cells, tumor-infiltrating lymphocytes, marrow-infiltrating T cells, natural killer cells as well as macrophage-based therapeutics. Advancement in genomics, computational biology, immunology, and cell therapy manufacturing has facilitated advancement of adoptive T cell therapies into the clinic, whereas clinical efficacy has driven Food and Drug Administration approvals.
View Article and Find Full Text PDFThe prevailing conditions surrounding the COVID-19 pandemic has shifted a variety of everyday activities onto platforms on the Internet. This has led to an increase in the number of people present on these platforms and also led to jump in the time spent by existing participants online. This increase in the presence of people on the Internet is almost never preceded by education about cyber-security and the various types of attacks that an everyday User of the Internet may be subjected to.
View Article and Find Full Text PDFAnti-drug antibody formation poses tremendous obstacles for optimal treatment of hemophilia A (HA). In this study, we sought to utilize chimeric receptor-modified natural regulatory T cells (Tregs) to target FVIII-specific memory B cells, which are responsible for persistent anti-FVIII neutralizing antibodies (inhibitors) in HA patients. Thus, CD4CD25 CD304 natural Tregs were FACS sorted from naïve C57BL/6 mice and retrovirally transduced to express a chimeric B-cell antibody receptor (BAR) containing the immunodominant A2 domain of FVIII.
View Article and Find Full Text PDFUsing phage peptide library screening, we identified peptide-encoding phages that selectively home to the inflamed central nervous system (CNS) of mice with experimental autoimmune encephalomyelitis (EAE), a model of human multiple sclerosis (MS). A phage peptide display library encoding cyclic 9-amino-acid random peptides was first screened ex-vivo for binding to the CNS tissue of EAE mice, followed by in vivo screening in the diseased mice. Phage insert sequences that were present at a higher frequency in the CNS of EAE mice than in the normal (control) mice were identified by DNA sequencing.
View Article and Find Full Text PDFAllergy is a major public health concern, the main treatment for which is symptomatic relief with anti-inflammatory drugs. A key clinical challenge is to induce specific tolerance in order to control allergen-specific memory B and T cells, and specifically block effector cell responses. Our lab recently developed antigen-specific regulatory T-cell (Treg) therapies as a treatment for adverse responses.
View Article and Find Full Text PDFRheumatoid arthritis is an autoimmune disease affecting the joints. Antiarthritic drugs are given systemically, thereby exposing various healthy organs to these drugs, resulting in adverse reactions. Accordingly, there is an urgent need for targeted drug delivery methods for inflamed joints.
View Article and Find Full Text PDFObjective And Design: Multiple sclerosis (MS) is a debilitating autoimmune disease involving immune dysregulation of the pathogenic T helper 17 (Th17) versus protective T regulatory (Treg) cell subsets, besides other cellular aberrations. Studies on the mechanisms underlying these changes have unraveled the involvement of mitogen-activated protein kinase (MAPK) pathway in the disease process. We describe here a gene expression- and bioinformatics-based study showing that celastrol, a natural triterpenoid, acting via MAPK pathway regulates the downstream genes encoding serum/glucocorticoid regulated kinase 1 (SGK1), which plays a vital role in Th17/Treg differentiation, and brain-derived neurotrophic factor (BDNF), which is a neurotrophic factor, thereby offering protection against experimental autoimmune encephalomyelitis (EAE) in mice.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a debilitating autoimmune disease affecting over 2.3 million people worldwide, and it is characterized by inflammation and demyelination of nerve cells. The currently available biomarkers for the diagnosis and management of MS have inherent limitations, therefore, additional new biomarkers are needed.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic, debilitating illness characterized by painful swelling of the joints, inflammation of the synovial lining of the joints, and damage to cartilage and bone. Several anti-inflammatory and disease-modifying drugs are available for RA therapy. However, the prolonged use of these drugs is associated with severe side effects.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic autoimmune disease of the joints affecting about 0.3⁻1% of the population in different countries. About 50⁻60 percent of RA patients respond to presently used drugs.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the synovial tissue of the joints. Inadequately controlled disease may cause severe joint damage and deformity. Currently, the anti-arthritic drugs are given systemically, and therefore, they are widely distributed to other organs that are not the intended therapeutic targets.
View Article and Find Full Text PDFPharmacol Res
November 2016
Elevated production of arachidonic acid (AA)-derived pro-inflammatory eicosanoids due to the concerted action of secretory phospholipase A group IIA (sPLAIIA), 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) is a common feature of many inflammatory disorders. Hence, modulation of the bioactivity of these 3 enzymes is an important strategy to control inflammation. However, the failure of drugs specific for an individual enzyme (sPLAIIA-, 5-LOX- or COX-2) and the success of 5-LOX/COX-2 dual inhibitors in effectively controlling inflammation in clinical trials prompted us to evaluate a common inhibitor for sPLAIIA, 5-LOX and COX-2 enzymes.
View Article and Find Full Text PDFCelastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.
View Article and Find Full Text PDFCelastrol is a bioactive compound derived from traditional Chinese medicinal herbs of the Celastraceae family. Celastrol is known to possess anti-inflammatory and anti-oxidant activities. Our studies have highlighted the immunomodulatory attributes of celastrol in adjuvant-induced arthritis (AA), an experimental model of human rheumatoid arthritis (RA).
View Article and Find Full Text PDFInt J Immunopathol Pharmacol
December 2015
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints leading to tissue damage. Despite the availability of potent drugs including the biologics, many patients fail to respond to them, whereas others suffer adverse effects following long-term use of these drugs. Accordingly, the use of natural herbal products by RA patients has been increasing over the years.
View Article and Find Full Text PDFInterleukin-27 (IL-27) is a new member of the IL-12 family. It is produced by activated antigen-presenting cells and plays an important role in the regulation of CD4+ T cell differentiation and immune response. IL-27 activates multiple signaling cascades, including the JAK-STAT and p38 MAPK pathways.
View Article and Find Full Text PDFInt J Immunopathol Pharmacol
September 2015
This study was aimed at gaining an insight into immune mechanisms of differential susceptibility to autoimmunity of individuals sharing the same major histocompatibility complex by studying arthritis-susceptible Lewis (LEW) and arthritis-resistant Wistar Kyoto (WKY) rats (both RT.1(l)) using the adjuvant arthritis (AA) model of rheumatoid arthritis (RA). Lymph node cells (LNC) and synovium-infiltrating cells (SIC) of LEW and WKY rat subjected to an arthritogenic challenge were tested.
View Article and Find Full Text PDFInflammation is an integral component of autoimmune arthritis. The balance of pathogenic T helper 17 (Th17) and protective T regulatory (Treg) cells can influence disease severity, and its resetting offers an attractive approach to control autoimmunity. We determined the frequency of Th17 and Treg in the joints of rats with adjuvant arthritis (AA), a model of rheumatoid arthritis (RA).
View Article and Find Full Text PDFThe T helper (Th) cell subsets are characterized by the type of cytokines produced and the master transcription factor expressed. Th1 cells participate in cell-mediated immunity, whereas Th2 cells promote humoral immunity. Furthermore, the two subsets can control each other.
View Article and Find Full Text PDFCytokines are the key mediators of inflammation in the course of autoimmune arthritis and other immune-mediated diseases. Uncontrolled production of the pro-inflammatory cytokines such as interferon-γ (IFN-γ), tumor necrosis factor α (TNFα), interleukin-6 (IL-6), and IL-17 can promote autoimmune pathology, whereas anti-inflammatory cytokines including IL-4, IL-10, and IL-27 can help control inflammation and tissue damage. The pro-inflammatory cytokines are the prime targets of the strategies to control rheumatoid arthritis (RA).
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic autoimmune disorder affecting the synovial joints. The currently available drugs for RA are effective only in a proportion of patients and their prolonged use is associated with severe adverse effects. Thus, new anti-arthritic agents are being sought.
View Article and Find Full Text PDFSusceptibility to autoimmunity is determined by multiple factors. Defining the contribution of the quantitative versus qualitative aspects of antigen-directed immune responses as well as the factors influencing target organ susceptibility is vital to advancing the understanding of the pathogenesis of autoimmunity. In a series of studies, we have addressed these issues using the adjuvant-induced arthritis (AA) model of human rheumatoid arthritis (RA).
View Article and Find Full Text PDF