Publications by authors named "Venkatesh Rajapurohitam"

We determined whether North American ginseng ( L.) mitigates the effect of angiotensin II on hypertrophy and heart failure. Angiotensin II (0.

View Article and Find Full Text PDF

There is increasing evidence for a beneficial effect of ginseng on cardiac pathology. Here, we determined whether North American ginseng can modulate the deleterious effects of the β-adrenoceptor agonist isoproterenol on cardiac hypertrophy and function using in vitro and in vivo approaches. Isoproterenol was administered for 2 weeks at either 25 mg/kg per day or 50 mg/kg per day (ISO25 or ISO50) via a subcutaneously implanted osmotic mini-pump to either control rats or those receiving ginseng (0.

View Article and Find Full Text PDF

White adipocytes are known to function as endocrine organs by secreting a plethora of bioactive adipokines which can regulate cardiac function including the development of hypertrophy. We determined whether adipose tissue conditioned medium (ATCM) generated from the epididymal regions of normal rats can affect the hypertrophic response of cultured rat ventricular myocytes to endothelin-1 (ET-1) administration. Myocytes were treated with ET-1 (10 nM) for 24 hours in the absence or presence of increasing ATCM concentrations.

View Article and Find Full Text PDF

The Janus kinase (JAK) system is involved in numerous cell signaling processes and is highly expressed in cardiac tissue. The JAK isoform JAK2 is activated by numerous factors known to influence cardiac function and pathologic conditions. However, although abundant, the role of JAK2 in the regulation or maintenance of cardiac homeostasis remains poorly understood.

View Article and Find Full Text PDF

Leptin is a 16 kDa pro-satiety peptide produced primarily not only by white adipocytes but also by numerous other tissues including the heart. Circulating leptin exerts its effect through specific receptors, although its principle actions are dependent on the activation of the long form of the leptin receptor, termed OBRb. As leptin is also produced within the cardiomyocyte, we hypothesized that the peptide can also exert effects by targeting intracellular sites.

View Article and Find Full Text PDF

Na(+)/H(+) exchanger 1 (NHE-1) inhibition attenuates the hypertrophic response and heart failure in various experimental models. As the hypertrophic program is rapidly initiated following insult, we investigated whether early and transient administration of a NHE-1 inhibitor will exert salutary effects on cardiomyocyte hypertrophy or heart failure using both in vitro and in vivo approaches. Neonatal cardiomyocytes were treated with the novel, potent, and highly specific NHE-1 inhibitor BIX (N-[4-(1-acetyl-piperidin-4-yl)-3-trifluoromethyl-benzoyl]-guanidine; 100 nM) for 1 hour in the presence of 10 µM phenylephrine, after which the cells were maintained for a further 23 hours in the absence of NHE-1 inhibition.

View Article and Find Full Text PDF

Background: Probiotics are extensively used to promote gastrointestinal health, and emerging evidence suggests that their beneficial properties can extend beyond the local environment of the gut. Here, we determined whether oral probiotic administration can alter the progression of postinfarction heart failure.

Methods And Results: Rats were subjected to 6 weeks of sustained coronary artery occlusion and administered the probiotic Lactobacillus rhamnosus GR-1 or placebo in the drinking water ad libitum.

View Article and Find Full Text PDF

Leptin is a 16 kDa peptide that was first identified in 1994 through positional cloning of the mouse obesity gene. Although the primary function of leptin is to act a satiety factor through its actions on the hypothalamus, it is now widely recognized that leptin can exert effects on many other organs through activation of its receptors, which are ubiquitously expressed. Leptin is secreted primarily by white adipocytes, but it is also produced by other tissues including the heart where it can exert effects in an autocrine or paracrine manner.

View Article and Find Full Text PDF

The identification of the adipocyte as a source of production of biologically-active peptides has materialized into an active area of research related to the role of these peptides in physiology and pathophysiology. Moreover, this research has resulted in the identification of the adipocyte as an endocrine organ producing potent bioactive compounds. An increasing number of these adipokines are being identified, the first of which was leptin, a product of the obesity gene whose primary function is to act as a satiety factor but which is now known to exert a myriad of effects.

View Article and Find Full Text PDF

Leptin, a product of the obesity gene, has been shown to produce cardiac hypertrophy. Although leptin's mechanism of action is poorly understood activation of the RhoA/ROCK pathway has been proposed as a contributing mechanism. The Ca(2+)-dependent phosphatase calcineurin plays a critical role in the hypertrophic program although it is not known whether leptin can activate this signaling pathway or whether there is a relationship between RhoA activation and calcineurin.

View Article and Find Full Text PDF

The obesity-related 16 kDa peptide leptin is synthesized primarily in white adipocytes although its production has been reported in other tissues including the heart. There is emerging evidence that leptin may contribute to cardiac pathology especially that related to myocardial remodelling and heart failure. In view of the importance of mitochondria to these processes, the goal of the present study is to determine the effect of leptin on mitochondria permeability transition pore opening and the potential consequence in terms of development of apoptosis.

View Article and Find Full Text PDF

Background: A major challenge in the treatment of heart failure is the ability to reverse already-established myocardial remodeling and ventricular dysfunction, with few available pharmacological agents prescribed for the management of heart failure having demonstrated successful reversal of the remodeling and hypertrophic processes. North American ginseng (Panax quinquefolius) has previously been shown to effectively prevent cardiomyocyte hypertrophy and heart failure. Here, we determined whether North American ginseng can reverse established cardiomyocyte hypertrophy in cultured myocytes as well as hypertrophy and left ventricular dysfunction in experimental heart failure secondary to coronary artery occlusion.

View Article and Find Full Text PDF

We recently identified leptin as a downstream factor mediating the hypertrophic effects of both angiotensin II and endothelin-1 in cardiomyocytes, an effect dependent on increased leptin biosynthesis, however, the mechanism for such increased leptin production is not known. This study was designed to elucidate the mechanisms underlying angiotensin II- and endothelin-1-stimulated synthesis in cultured ventricular myocytes. The hypertrophic effects of both angiotensin II (100 nM) and endothelin-1 (10 nM) were associated with increased leptin secretion and gene expression by 40 and 50 %, and 86 and 68 %, respectively.

View Article and Find Full Text PDF

In addition to inotropic effects, cardiac glycosides exert deleterious effects on the heart which limit their use for cardiac therapeutics. In this study, we determined the possible contribution of ouabain-induced iNOS stimulation to the resultant hypertrophic as well as cytotoxic effects of the glycoside on cultured adult rat ventricular myocytes. Myocytes were treated with ouabain (50 μM) for up to 24 h.

View Article and Find Full Text PDF

Leptin is a 16-kDa peptide primarily derived from white adipocytes and is typically elevated in plasma of obese individuals. Although leptin plays a critical role in appetite regulation, leptin receptors have been identified in numerous tissues including the heart and have been shown to directly mediate cardiac hypertrophy through RhoA/ROCK (Ras homolog gene family, member A/Rho-associated, coiled-coil containing protein kinase)-dependent p38 mitogen-activated protein kinase (MAPK) activation; however, the basis for RhoA stimulation is unknown. Rho guanine nucleotide exchange factors (GEFs) catalyze the exchange of GDP for GTP resulting in Rho activation and may be the potential upstream factors mediating leptin-induced RhoA activation and therefore a potential target for inhibition.

View Article and Find Full Text PDF

Background: Ginseng is a medicinal plant used widely in Asia that has gained popularity in the West during the past decade. Increasing evidence suggests a therapeutic role for ginseng in the cardiovascular system. The pharmacological properties of ginseng are mainly attributed to ginsenosides, the principal bioactive constituents in ginseng.

View Article and Find Full Text PDF

Studies on the role of mitochondrial fission/fusion (MFF) proteins in the heart have been initiated recently due to their biological significance in cell metabolism. We hypothesized that the expression of MFF proteins is affected by post-infarction remodeling and in vitro cardiomyocyte hypertrophy, and serves as a target for the Na(+)/H(+) exchanger 1 (NHE-1) inhibition. Post-infarction remodeling was induced in Sprague-Dawley rats by coronary artery ligation (CAL) while in vitro hypertrophy was induced in cardiomyocytes by phenylephrine (PE).

View Article and Find Full Text PDF

Aims: Natriuretic peptides (NPs) inhibit cardiomyocyte hypertrophy through a cyclic GMP (cGMP)-dependent process, although these effects are associated with substantial vasodilatation. In this study, we used CU-NP, a non-vasodilatating novel NP synthesized from the ring structure of human C-type NP (CNP) and both C- and N-termini of urodilatin, and investigated whether it can directly modulate cardiomyocyte hypertrophy.

Methods And Results: Experiments were carried out in cultured neonatal rat ventricular myocytes exposed to phenylephrine, angiotensin II, or endothelin-1 in the absence or presence of CU-NP.

View Article and Find Full Text PDF

Stimulation of cardiac AMP-activated protein kinase (AMPK) has been demonstrated in both prohypertrophic and antihypertrophic settings, although the reasons for such discrepant results are not well understood. We determined how AMPK is regulated in response to phenylephrine-induced cardiomyocyte hypertrophy and assessed whether AMPK activity may be a factor underlying the antihypertrophic effect of adenosine receptor agonists. The role of AMPK in hypertrophic responses was determined by assessing the effect of the AMPK activator 5-aminoimidazole-4-carboxyamide ribonucleoside on three hypertrophic indexes, including protein synthesis, cell surface area, and fetal gene expression.

View Article and Find Full Text PDF

Although nitric oxide (NO) has received extensive attention as an anti-hypertrophic agent the mechanisms underlying its regulation of endothelin-1 (ET-1) have not been fully elucidated. Since RhoA has been identified as an important mediator of cardiac hypertrophy and is inhibited by NO in vascular tissue, we sought to determine whether the anti-ET-1 effects of NO in cardiomyocytes were mediated via inhibition of the RhoA-ROCK cascade in the context of cardiac hypertrophy. Neonatal rat ventricular myocytes were cultured in the presence of ET-1 (10 nM) with or without pre-treatment with the NO donor S-nitroso-n-acetylpenicillamine (SNAP; 100 microM), 8-Br-cGMP (cGMP; 100 microM), the RhoA inhibitor C3 exoenzyme (C3; 30 ng/ml), or the ROCK inhibitor Y-27632 (10 microM).

View Article and Find Full Text PDF

Although Na(+)-H(+) exchanger 1 (NHE-1) inhibition has been demonstrated to have anti-hypertrophic effect indirectly through mitochondria, the detailed cellular mechanisms mediating this effect remain elusive. In this study we sought to determine whether NHE-1 inhibition exerts an anti-hypertrophic effect by modulating the mitochondrial permeability transition pore (mPTP) opening through the AMP-activated protein kinase (AMPK)/glycogen synthase kinase 3beta (GSK-3beta) pathway during hypertrophy in cardiomyocytes. An in vivo model of hypertrophy was induced in male Sprague-Dawley rats by subjecting them to 3, 7 or 28 days of coronary artery ligation (CAL).

View Article and Find Full Text PDF

Adipokines represent a family of proteins released by adipocytes that affect various biological processes including metabolism, satiety, inflammation, and cardiovascular function. The first adipokine to be identified is leptin, a product of the obesity gene whose primary function is to act as a satiety factor. However, it is now recognized that leptin and many of the newly discovered adipokines produce effects on numerous organ systems including the heart.

View Article and Find Full Text PDF

The 16 kDa adipokine leptin has been shown to exert direct hypertrophic effects on cultured cardiomyocytes although its role as an endogenous contributor to postinfarction remodeling and heart failure has not been determined. We therefore investigated the effect of leptin receptor blockade in vivo on hemodynamic function and cardiac hypertrophy following coronary artery ligation (CAL). Cardiac function and biochemical parameters were measured in rats subjected to 7 or 28 days of left main CAL in the presence and absence of a leptin receptor antibody.

View Article and Find Full Text PDF

Aims: The possible contribution of the cardiac mitochondrial permeability transition pore (PTP) towards the cardioprotective effects of Na(+)-H(+) exchanger-1 (NHE-1) inhibition was studied in hearts subjected to ischaemia/reperfusion (IR).

Methods And Results: Langendorff-perfused rat hearts were subjected to 40 min of global ischaemia and 60 min of reperfusion in the presence or absence of the NHE-1 specific inhibitor AVE-4890 (AVE, 5 microM). Mitochondrial PTP opening was determined in the intact heart using 2-deoxy-[(3)H]-glucose entrapment and in isolated mitochondria by monitoring the decrease of the calcium-induced light scattering.

View Article and Find Full Text PDF

The satiety factor leptin has received extensive attention especially in terms of its potential role in appetite suppression and regulation of energy expenditure. Once considered to be solely derived from adipose tissue, which accounts for the greatly increased levels observed in obese subjects, it is now apparent that leptin can be produced by a multiplicity of tissues, including the heart, where it appears to function in an autocrine and paracrine manner. Plasma leptin concentrations are also elevated in patients with heart disease including those with congestive heart failure.

View Article and Find Full Text PDF