2D conjugated metal-organic frameworks (c-MOFs) have emerged as promising materials for (opto)electronic applications due to their excellent charge transport properties originating from the unique layered-stacked structures with extended in-plane conjugation. The further advancement of MOF-based (opto)electronics necessitates the development of novel 2D c-MOF thin films with high quality. Cu-HHHATN (HHHATN: hexahydroxyl-hexaazatrinaphthylene) is a recently reported 2D c-MOF featuring high in-plane conjugation, strong interlayer π-π stacking, and multiple coordination sites, while the production of its thin-film form has not yet been reported.
View Article and Find Full Text PDFCu (HHTT) (HHTT: 2,3,7,8,12,13-hexahydroxytetraazanaphthotetraphene) is a novel 2D conjugated metal-organic framework (2D c-MOF) with efficient in-plane d-π conjugations and strong interlayer π-π interactions while the growth of Cu (HHTT) thin films has never been reported until now. Here, the successful fabrication of highly oriented wafer-scale Cu (HHTT) thin films with a layer-by-layer growth method on various substrates is presented. Its semiconducting behavior and carrier transport mechanisms are clarified through temperature and frequency-dependent conductivity measurements.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Two new A-D-A small-molecule donors (C8T-BDTDP and C8ST-BDTDP) are prepared from benzodithiophene (BDT)-linked dimeric porphyrin (DP), which differ in side chains of BDT linkers with 4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene (C8T-BDT) for the former and 4,8-bis{5-[(2-ethylhexyl)thio]-2-thienyl}benzo[1,2-b:4,5-b']dithiophene (C8ST-BDT) for the latter. Both dimeric porphyrin donors show strongly UV-visible to near-infrared absorption. Compared to C8T-BDTDP, C8ST-BDTDP with an alkylthiothienyl-substituted BDT linker exhibits more intense absorption bands in the film and a lower highest occupied molecular orbital energy level.
View Article and Find Full Text PDFDiketopyrrolopyrrole-ethynylene-bridged porphyrin dimers are capped with electron-deficient 3-ethylrhodanine (A) via a π-bridge of phenylene ethynylene, affording two new acceptor-donor-acceptor structural porphyrin dimers (DPP-2TTP and DPP-2TP) with strong absorption in ranges of 400-550 nm (Soret bands) and 700-900 nm (Q bands). Their intrinsic absorption deficiency between the Soret and Q bands could be perfectly compensated by a wide-bandgap small molecule DR3TBDTTF (D*) with absorption at 500-700 nm. Impressively, the optimal ternary device based on the blend films of DPP-2TPP, DR3TBDTTF (20 wt %), and PCBM shows a PCE of 11.
View Article and Find Full Text PDF