Introduction: Voltage-sensitive optical (VSO) sensors offer a minimally invasive method to study the time course of repolarization of the cardiac action potential (AP). This Comprehensive in vitro Proarrhythmia Assay (CiPA) cross-platform study investigates protocol design and measurement variability of VSO sensors for preclinical cardiac electrophysiology assays.
Methods: Three commercial and one academic laboratory completed a limited study of the effects of 8 blinded compounds on the electrophysiology of 2 commercial lines of human induced pluripotent stem-cell derived cardiomyocytes (hSC-CMs).
Aims: The majority of patients diagnosed with arrhythmogenic right ventricular cardiomyopathy (ARVC) have mutations in genes encoding desmosomal proteins, raising the possibility that abnormal intercellular adhesion plays an important role in disease pathogenesis. We characterize cell mechanical properties and molecular responses to oscillatory shear stress in cardiac myocytes expressing mutant forms of the desmosomal proteins, plakoglobin and plakophilin, which are linked to ARVC in patients.
Methods And Results: Cells expressing mutant plakoglobin or plakophilin showed no differences in cell-cell adhesion relative to controls, while knocking down these proteins weakened cell-cell adhesion.
Germline loss-of-function BHD mutations cause cystic lung disease and hereditary pneumothorax, yet little is known about the impact of BHD mutations in the lung. Folliculin (FLCN), the product of the Birt-Hogg-Dube (BHD) gene, has been linked to altered cell-cell adhesion and to the AMPK and mTORC1 signaling pathways. We found that downregulation of FLCN in human bronchial epithelial (HBE) cells decreased the phosphorylation of ACC, a marker of AMPK activation, while downregulation of FLCN in small airway epithelial (SAEC) cells increased the activity of phospho-S6, a marker of mTORC1 activation, highlighting the cell type-dependent functions of FLCN.
View Article and Find Full Text PDFThe toxic effects of acrylamide on cytoskeletal integrity and ion channel balance is well-established in many cell types, but there has been little examination regarding the effects of acrylamide on primary cardiomyocytes, despite the importance of such components in their function. Furthermore, acrylamide toxicity is generally examined using concentrations higher than those found in vivo under starch-rich diets. Accordingly, we sought to characterize the dose-dependent effects of acrylamide on various properties, including cell morphology, contraction patterns, and junctional connexin 43 staining, in primary cardiomyocytes.
View Article and Find Full Text PDFCurrently, many diabetic cardiomyopathy (DC) studies focus on either in vitro molecular pathways or in vivo whole-heart properties such as ejection fraction. However, as DC is primarily a disease caused by changes in structural and functional properties, such studies may not precisely identify the influence of hyperglycemia or hyperlipidemia in producing specific cellular changes, such as increased myocardial stiffness or diastolic dysfunction. To address this need, we developed an in vitro approach to examine how structural and functional properties may change as a result of a diabetic environment.
View Article and Find Full Text PDFBirt-Hogg-Dube (BHD) is a tumor suppressor gene syndrome associated with fibrofolliculomas, cystic lung disease, and chromophobe renal cell carcinoma. In seeking to elucidate the pathogenesis of BHD, we discovered a physical interaction between folliculin (FLCN), the protein product of the BHD gene, and p0071, an armadillo repeat containing protein that localizes to the cytoplasm and to adherens junctions. Adherens junctions are one of the three cell-cell junctions that are essential to the establishment and maintenance of the cellular architecture of all epithelial tissues.
View Article and Find Full Text PDFControl over cell viability is a fundamental property underlying numerous physiological processes. Cell spreading on a substrate was previously demonstrated to be a major factor in determining the viability of individual cells. In multicellular organisms, cell-cell contact is likely to play a significant role in regulating cell vitality, but its function is easily masked by cell-substrate interactions, thus remains incompletely characterized.
View Article and Find Full Text PDFThe 14-18 amino acid kinesin neck linker domain links the core motor to the coiled-coil dimerization domain. One puzzle is that the neck linker appears too short for the 4 nm distance each linker must stretch to enable an 8 nm step - when modeled as an entropic spring, high inter-head forces are predicted when both heads are bound to the microtubule. We addressed this by analyzing the length of the neck linker across different kinesin families and using molecular dynamics simulations to model the extensibility of Kinesin-1 and Kinesin-2 neck linkers.
View Article and Find Full Text PDF