Publications by authors named "Venkatayogi S"

Elicitation of HIV broadly neutralizing antibodies (bnAbs) by vaccination first requires the activation of diverse precursors, followed by successive boosts that guide these responses to enhanced breadth through the acquisition of somatic mutations. Because HIV bnAbs contain mutations in their B cell receptors (BCRs) that are rarely generated during conventional B cell maturation, HIV vaccine immunogens must robustly engage and expand B cells with BCRs that contain these improbable mutations. Here, we engineered an immunogen that activates diverse precursors of an HIV V3-glycan bnAb and promotes their acquisition of a functionally critical improbable mutation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the immune system of young macaques can produce antibodies that neutralize various strains of HIV-1, showing a higher success rate in infants compared to adults.
  • Over a 24-month period, 64% of young macaques developed these antibodies, linked to a healthier immune profile with reduced immunosuppressive factors.
  • The findings suggest that understanding pediatric immune responses to SHIV may help in creating vaccines to protect infants and children from HIV-1 before they are exposed to the virus.
View Article and Find Full Text PDF

Vaccine development targeting rapidly evolving pathogens such as HIV-1 requires induction of broadly neutralizing antibodies (bnAbs) with conserved paratopes and mutations, and in some cases, the same Ig-heavy chains. The current trial-and-error search for immunogen modifications that improve selection for specific bnAb mutations is imprecise. Here, to precisely engineer bnAb boosting immunogens, we use molecular dynamics simulations to examine encounter states that form when antibodies collide with the HIV-1 Envelope (Env).

View Article and Find Full Text PDF

Nucleoside-modified mRNA technology has revolutionized vaccine development with the success of mRNA COVID-19 vaccines. We used modified mRNA technology for the design of envelopes (Env) to induce HIV-1 broadly neutralizing antibodies (bnAbs). However, unlike SARS-CoV-2 neutralizing antibodies that are readily made, HIV-1 bnAb induction is disfavored by the immune system because of the rarity of bnAb B cell precursors and the cross-reactivity of bnAbs targeting certain Env epitopes with host molecules, thus requiring optimized immunogen design.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to create a vaccine for HIV-1 that makes special antibodies called broadly neutralizing antibodies (bnAbs) that can fight the virus.*
  • They found a way to design important boosters that help these antibodies develop stronger and better by using unique methods with special mice.*
  • Their research shows that both protein and mRNA boosters can successfully help create these powerful antibodies, which is an important step toward making an effective HIV-1 vaccine.*
View Article and Find Full Text PDF

Unlabelled: Immunodominant and highly conserved flavivirus envelope proteins can trigger cross-reactive IgG antibodies against related flaviviruses, which shapes subsequent protection or disease severity. This study examined how prior dengue serotype 3 (DENV-3) infection affects subsequent Zika virus (ZIKV) plasmablast responses in rhesus macaques ( = 4). We found that prior DENV-3 infection was not associated with diminished ZIKV-neutralizing antibodies or magnitude of plasmablast activation.

View Article and Find Full Text PDF

The CD4-binding site (CD4bs) is a conserved epitope on HIV-1 envelope (Env) that can be targeted by protective broadly neutralizing antibodies (bnAbs). HIV-1 vaccines have not elicited CD4bs bnAbs for many reasons, including the occlusion of CD4bs by glycans, expansion of appropriate naive B cells with immunogens, and selection of functional antibody mutations. Here, we demonstrate that immunization of macaques with a CD4bs-targeting immunogen elicits neutralizing bnAb precursors with structural and genetic features of CD4-mimicking bnAbs.

View Article and Find Full Text PDF

Vaccine development targeting rapidly evolving pathogens such as HIV-1 requires induction of broadly neutralizing antibodies (bnAbs) with conserved paratopes and mutations, and, in some cases, the same Ig-heavy chains. The current trial-and-error search for immunogen modifications that improve selection for specific bnAb mutations is imprecise. To precisely engineer bnAb boosting immunogens, we used molecular dynamics simulations to examine encounter states that form when antibodies collide with the HIV-1 Envelope (Env).

View Article and Find Full Text PDF

Despite the advent of highly active anti-retroviral therapy, people are still dying from HIV-related causes, many of whom are children, and a protective vaccine or cure is needed to end the HIV pandemic. Understanding the nature and activation states of immune cell subsets during infection will provide insights into the immunologic milieu associated with viremia suppression that can be harnessed via therapeutic strategies to achieve a functional cure, but these are understudied in pediatric subjects. We evaluated humoral and adaptive host immunity associated with suppression of viremia in rhesus macaques infected soon after birth with a pathogenic SHIV.

View Article and Find Full Text PDF

Antibodies are generated by B cells that evolve receptor specificity to pathogens through rounds of mutation and selection in a process called affinity maturation. Somatic hypermutation is mediated by an enzyme with DNA sequence context-dependent targeting and substitution resulting in variable probabilities of amino acid substitutions during affinity maturation. We have previously developed a program called Antigen Receptor Mutation Analyzer for the Detection of Low Likelihood Occurrences (ARMADiLLO) that performs simulations of the somatic hypermutation process to estimate the probabilities of observed antibody mutations.

View Article and Find Full Text PDF

Targeting germline (gl-) precursors of broadly neutralizing antibodies (bNAbs) is acknowledged as an important strategy for HIV-1 vaccines. The VRC01-class of bNAbs is attractive because of its distinct genetic signature. However, VRC01-class bNAbs often require extensive somatic hypermutation, including rare insertions and deletions.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region.

View Article and Find Full Text PDF

The success of nucleoside-modified mRNAs in lipid nanoparticles (mRNA-LNP) as COVID-19 vaccines heralded a new era of vaccine development. For HIV-1, multivalent envelope (Env) trimer protein nanoparticles are superior immunogens compared with trimers alone for priming of broadly neutralizing antibody (bnAb) B cell lineages. The successful expression of complex multivalent nanoparticle immunogens with mRNAs has not been demonstrated.

View Article and Find Full Text PDF

The success of nucleoside-modified mRNAs in lipid nanoparticles (mRNA-LNP) as COVID-19 vaccines heralded a new era of vaccine development. For HIV-1, multivalent envelope (Env) trimer protein nanoparticles are superior immunogens compared to trimers alone for priming of broadly neutralizing antibody (bnAb) B cell lineages. The successful expression of complex multivalent nanoparticle immunogens with mRNAs has not been demonstrated.

View Article and Find Full Text PDF

Protein-protein interactions lie at the heart of many biological processes and therefore represent promising drug targets. Despite this opportunity, identification of protein-protein interfaces remains challenging. We have previously developed a method that relies on coating protein surfaces with small-molecule dyes to discriminate between solvent-accessible protein surfaces and hidden interface regions.

View Article and Find Full Text PDF

Fluorosis is one of the most prevailing groundwater related disease in developing countries like India and China. In India, 20 out of 29 states have some extent of groundwater fluoride contamination. In especially, Telangana State all (10 out of 10) districts are fluoride affected (Adimalla and Venkatayogi, 2017) [2].

View Article and Find Full Text PDF