Publications by authors named "Venkatadri Kolla"

High-risk solid tumors continue to pose a tremendous therapeutic challenge due to multidrug resistance. Biological mechanisms driving chemoresistance in high-risk primary and recurrent disease are distinct: in newly diagnosed patients, non-response to therapy is often associated with a higher level of tumor "stemness" paralleled by overexpression of the ABCG2 drug efflux pump, whereas in tumors relapsing after non-curative therapy, poor drug sensitivity is most commonly linked to the dysfunction of the tumor suppressor protein, p53. In this study, we used preclinical models of aggressive neuroblastoma featuring these characteristic mechanisms of primary and acquired drug resistance to experimentally evaluate a macromolecular prodrug of a structurally enhanced camptothecin analog, SN22, resisting ABCG2-mediated export, and glucuronidation.

View Article and Find Full Text PDF

Despite the use of intensive multimodality therapy, the majority of high-risk neuroblastoma (NB) patients do not survive. Without significant improvements in delivery strategies, anticancer agents used as a first-line treatment for high-risk tumors often fail to provide clinically meaningful results in the settings of disseminated, recurrent, or refractory disease. By enhancing pharmacological selectivity, favorably shifting biodistribution, strengthening tumor cell killing potency, and overcoming drug resistance, nanocarrier-mediated delivery of topoisomerase I inhibitors of the camptothecin family has the potential to dramatically improve treatment efficacy and minimize side effects.

View Article and Find Full Text PDF

Purpose: In a previous study, we demonstrated that the combination of fenretinide with lenalidomide, administered by a novel nanomicellar formulation (FLM), provided a strong antitumor effect in a neuroblastoma TrkB-expressing tumor. In this study, we tested the nanomicellar combination in an amplified neuroblastoma xenograft to assess its efficacy in different tumor genotypes and evaluate the interactions of the nanomicelles with the tumor cells.

Experimental Design: FLM was administered to mice bearing human NLF xenografts to evaluate its efficacy in comparison with the nanomicelles containing fenretinide alone (FM).

View Article and Find Full Text PDF

Camptothecins are potent topoisomerase I inhibitors used to treat high-risk pediatric solid tumors, but they often show poor efficacy due to intrinsic or acquired chemoresistance. Here, we developed a multivalent, polymer-based prodrug of a structurally optimized camptothecin (SN22) designed to overcome key chemoresistance mechanisms. The ability of SN22 vs.

View Article and Find Full Text PDF

Neuroblastomas (NBs) have heterogeneous clinical behavior, from spontaneous regression or differentiation to relentless progression. Evidence from our laboratory and others suggests that neurotrophin receptors contribute to these disparate behaviors. Previously, the role of TRK receptors in NB pathogenesis was investigated.

View Article and Find Full Text PDF

Purpose: Currently >50% of high-risk neuroblastoma (NB) patients, despite intensive therapy and initial partial or complete response, develop recurrent NB due to the persistence of minimal residual disease (MRD) that is resistant to conventional antitumor drugs. Indeed, their low therapeutic index prevents drug-dose escalation and protracted administration schedules, as would be required for MRD treatment. Thus, more effective and less toxic therapies are urgently needed for the management of MRD.

View Article and Find Full Text PDF

TrkB with its ligand, brain-derived neurotrophic factor (BDNF), are overexpressed in the majority of high-risk neuroblastomas (NB). Entrectinib is a novel pan-TRK, ALK, and ROS1 inhibitor that has shown excellent preclinical efficacy in NB xenograft models, and recently it has entered phase 1 trials in pediatric relapsed/refractory solid tumors. We examined entrectinib-resistant NB cell lines to identify mechanisms of resistance.

View Article and Find Full Text PDF

Currently, <50% of high-risk pediatric solid tumors like neuroblastoma can be cured, and many survivors experience serious or life-threatening toxicities, so more effective, less toxic therapy is needed. One approach is to target drugs to tumors using nanoparticles, which take advantage of the enhanced permeability of tumor vasculature. SN38, the active metabolite of irinotecan (CPT-11), is a potent therapeutic agent that is readily encapsulated in polymeric nanoparticles.

View Article and Find Full Text PDF

Neuroblastoma (NB), a tumor of the sympathetic nervous system, is the most common extracranial solid tumor of childhood. We and others have identified distinct patterns of genomic change that underlie diverse clinical behaviors, from spontaneous regression to relentless progression. We first identified CHD5 as a tumor suppressor gene that is frequently deleted in NBs.

View Article and Find Full Text PDF

Neuroblastoma (NB) is one of the most common and deadly childhood solid tumors. These tumors are characterized by clinical heterogeneity, from spontaneous regression to relentless progression, and the Trk family of neurotrophin receptors plays an important role in this heterogeneous behavior. We wanted to determine if entrectinib (RXDX-101, Ignyta, Inc.

View Article and Find Full Text PDF

Background: Chromodomain-helicase DNA binding protein 5 (CHD5) is an important tumor suppressor gene deleted from 1p36.31 in neuroblastomas (NBs). High CHD5 expression is associated with a favorable prognosis, but deletion or low expression is frequent in high-risk tumors.

View Article and Find Full Text PDF

Eukaryotic gene expression is developmentally regulated, in part by chromatin remodelling, and its dysregulation has been linked to cancer. CHD5 (chromodomain helicase DNA-binding protein 5) is a tumour suppressor gene (TSG) that maps to a region of consistent deletion on 1p36.31 in neuroblastomas (NBs) and other tumour types.

View Article and Find Full Text PDF

Nanomedicine-based strategies have the potential to improve therapeutic performance of a wide range of anticancer agents. However, the successful implementation of nanoparticulate delivery systems requires the development of adequately sized nanocarriers delivering their therapeutic cargo to the target in a protected, pharmacologically active form. The present studies focused on a novel nanocarrier-based formulation strategy for SN-38, a topoisomerase I inhibitor with proven anticancer potential, whose clinical application is compromised by toxicity, poor stability and incompatibility with conventional delivery vehicles.

View Article and Find Full Text PDF

Neuroblastoma (NB) is the most common and deadly solid tumor in children. The majority of NB patients have advanced stage disease with poor prognosis, so more effective, less toxic therapy is needed. We developed a novel nanocarrier-based strategy for tumor-targeted delivery of a prodrug of SN38, the active metabolite of irinotecan.

View Article and Find Full Text PDF

CHD5 was first identified because of its location on 1p36 in a region of frequent deletion in neuroblastomas. CHD5 (chromodomain-helicase-DNA-binding-5) is the fifth member of a family of chromatin remodeling proteins, and it probably functions by forming a nucleosome remodeling and deacetylation (NuRD) complex that regulates transcription of particular genes. CHD5 is preferentially expressed in the nervous system and testis.

View Article and Find Full Text PDF

Introduction: Neuroblastoma (NB) is the most common and deadly solid tumor in children. Despite recent improvements, the long-term outlook for high-risk NB is still < 50%. Further, there is considerable short- and long-term toxicity.

View Article and Find Full Text PDF

Haploid spermatids undergo extensive cellular, molecular and morphological changes to form spermatozoa during spermiogenesis. Abnormalities in these steps can lead to serious male fertility problems, from oligospermia to complete azoospermia. CHD5 is a chromatin-remodeling nuclear protein expressed almost exclusively in the brain and testis.

View Article and Find Full Text PDF

Purpose: Neuroblastomas (NBs) have genomic, biological, and clinical heterogeneity. High-risk NBs are characterized by several genomic changes, including MYCN amplification and 1p36 deletion. We identified the chromatin-remodeling gene CHD5 as a tumor suppressor gene that maps to 1p36.

View Article and Find Full Text PDF

Background: Neuroblastomas (NBs) are characterized by clinical heterogeneity, from spontaneous regression to relentless progression. The pattern of NTRK family gene expression contributes to these disparate behaviors. TrkA/NTRK1 is expressed in favorable NBs that regress or differentiate, whereas TrkB/NTRK2 and its ligand brain-derived neurotrophic factor (BDNF) are co-expressed in unfavorable NBs, representing an autocrine survival pathway.

View Article and Find Full Text PDF

Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days.

View Article and Find Full Text PDF

Neuroblastoma, the most common and deadly solid tumor in children, exhibits heterogeneous clinical behavior, from spontaneous regression to relentless progression. Current evidence suggests that the TRK family of neurotrophin receptors plays a critical role in these diverse behaviors. Neuroblastomas expressing TrkA are biologically favorable and prone to spontaneous regression or differentiation, depending on the absence or presence of its ligand (NGF) in the microenvironment.

View Article and Find Full Text PDF

Carcinoembryonic cell adhesion molecule 6 (CEACAM6) is a glycosylated, glycosylphosphatidylinositol (GPI)-anchored protein expressed in epithelial cells of various human tissues. It binds gram-negative bacteria and is overexpressed in cancers, where it is antiapoptotic and promotes metastases. To characterize CEACAM6 expression in developing lung, we cultured human fetal lung epithelial cells and examined responses to differentiation-promoting hormones, adenovirus expressing thyroid transcription factor-1 (TTF-1), and silencing of TTF-1 with small inhibitory RNA.

View Article and Find Full Text PDF

Background: Neuroblastomas are characterized by hemizygous 1p deletions, suggesting that a tumor suppressor gene resides in this region. We previously mapped the smallest region of consistent deletion to a 2-Mb region of 1p36.31 that encodes 23 genes.

View Article and Find Full Text PDF

The purpose of this study was to determine the expression and cellular functions of the epithelial NADPH oxidase DUOX1 during alveolar type II cell development. When human fetal lung cells (gestational age 11-22 wk) were cultured to confluency on permeable filters, exposure of cells to a hormone mixture (dexamethasone, 8-Br-cAMP, and IBMX, together referred to as DCI) resulted in differentiation of cells into a mature type II phenotype as assessed by expression of lamellar bodies, surfactant proteins, and transepithelial electrical parameters. After 6 days in culture in presence of DCI, transepithelial resistance (2,616 +/- 529 Omega.

View Article and Find Full Text PDF

Thyroid transcription factor-1 (TTF-1, product of the Nkx2.1 gene) is essential for branching morphogenesis of the lung and enhances expression of surfactant proteins by alveolar type II cells. We investigated expression of two TTF-1 mRNA transcripts, generated by alternative start sites and coding for 42- and 46-kD protein isoforms in the mouse, during hormone-induced differentiation of human fetal lung type II cells in culture.

View Article and Find Full Text PDF