Next-generation sequencing (NGS) has enabled genome-wide personalized oncology efforts at centers and companies with the specialty expertise and infrastructure required to identify and prioritize actionable variants. Such approaches are not scalable, preventing widespread adoption. Likewise, most targeted NGS approaches fail to assess key relevant genomic alteration classes.
View Article and Find Full Text PDFUnlabelled: Phyllodes tumors are rare fibroepithelial tumors with variable clinical behavior accounting for a small subset of all breast neoplasms, yet little is known about the genetic alterations that drive tumor initiation and/or progression. Here, targeted next-generation sequencing (NGS) was used to identify somatic alterations in formalin-fixed paraffin-embedded (FFPE) patient specimens from malignant, borderline, and benign cases. NGS revealed mutations in mediator complex subunit 12 (MED12) affecting the G44 hotspot residue in the majority (67%) of cases spanning all three histologic grades.
View Article and Find Full Text PDFAlthough multifocal tumors and non-invasive/invasive components are commonly encountered in surgical pathology, their genetic relationship is often poorly characterized. We used next-generation sequencing (NGS) to characterize somatic alterations in a patient with five spatially distinct, high-grade papillary urothelial carcinomas (UCs), with one tumor harboring an underlying invasive component. NGS of 409 cancer-related genes was performed on DNA isolated from formalin-fixed paraffin-embedded (FFPE) blocks representing each papillary tumor (n = 5), the invasive component of one tumor, and matched normal tissue.
View Article and Find Full Text PDF