Publications by authors named "Venkata V B Yallapragada"

In the burgeoning field of proteins, the effective analysis of intricate protein data remains a formidable challenge, necessitating advanced computational tools for data processing, feature extraction, and interpretation. This study introduces ProteinFlow, an innovative framework designed to revolutionize feature engineering in protein data analysis. ProteinFlow stands out by offering enhanced efficiency in data collection and preprocessing, along with advanced capabilities in feature extraction, directly addressing the complexities inherent in multidimensional protein data sets.

View Article and Find Full Text PDF

With the explosive growth of protein-related data, we are confronted with a critical scientific inquiry: How can we effectively retrieve, compare, and profoundly comprehend these protein structures to maximize the utilization of such data resources? PS-GO, a parametric protein search engine, has been specifically designed and developed to maximize the utilization of the rapidly growing volume of protein-related data. This innovative tool addresses the critical need for effective retrieval, comparison, and deep understanding of protein structures. By integrating computational biology, bioinformatics, and data science, PS-GO is capable of managing large-scale data and accurately predicting and comparing protein structures and functions.

View Article and Find Full Text PDF

In the field of bioinformatics and computational biology, protein structure modelling and analysis is a crucial aspect. However, most existing tools require a high degree of technical expertise and lack a user-friendly interface. To address this problem, we developed a protein workstation called PROFASA.

View Article and Find Full Text PDF

Proteins mediate and perform various fundamental functions of life. This versatility of protein function is an attribute of its 3D structure. In recent years, our understanding of protein 3D structure has been complemented with advances in computational and mathematical tools for protein modelling and protein design.

View Article and Find Full Text PDF

Proteins mediate many essential processes of life to a degree of functional precision unmatched by any synthetic device. While engineered proteins are currently used in biotech, food, biomedicine, and material technology-based industries, the true potential of proteins is practically untapped. The emerging field of in silico protein design is predicted to provide the next quantum leap in the biotech industry.

View Article and Find Full Text PDF

Protein engineering and synthetic biology stand to benefit immensely from recent advances in silico tools for structural and functional analyses of proteins. In the context of designing novel proteins, current in silico tools inform the user on individual parameters of a query protein, with output scores/metrics unique to each parameter. In reality, proteins feature multiple "parts"/functions and modification of a protein aimed at altering a given part, typically has collateral impact on other protein parts.

View Article and Find Full Text PDF

Continuous monitoring of bacterial growth in aqueous media is a crucial process in academic research as well as in the biotechnology industry. Bacterial growth is usually monitored by measuring the optical density of bacteria in liquid media, using benchtop spectrophotometers. Due to the large form factor of the existing spectrophotometers, they cannot be used for live monitoring of the bacteria inside bacterial incubation chambers.

View Article and Find Full Text PDF