Establishing concentration of microplastics (MPs), designated as C, in aqueous, semi-solid and solid samples originating from unscientifically created landfills/dumpsites (UCLDs) and engineered landfills (ELFs) is of utmost importance to assess their impact on the geoenvironment. However, the accuracy of C will be guided by the extraction efficiency of MPs from these samples. The extraction of MPs from semi-solid and solid samples of UCLDs/ELFs would be cumbersome, mainly due to their trapping in solid aggregates (including organic matter).
View Article and Find Full Text PDFThe implementation of circular economy (CE) strategies has facilitated a comprehensive approach to waste management (WM) in university campuses. Composting food waste (FW) and biomass can mitigate negative environmental impacts and be part of a closed-loop economy. The compost can be used as a fertilizer, thereby closing the waste cycle.
View Article and Find Full Text PDFThe utilization of landfill-mined-soil-like-fractions (LFMSF), which is a major fraction resulting from landfill mining (LFM) activity, is being debated owing to a lack of comprehensive understanding of its characteristics. In this context, based on the physicochemical properties of LFMSF, several of the earlier researchers have opposed its utilization as compost, feedstock in waste-to-energy, and fill material in civil engineering applications. However, it has been noticed that LFMSF consists of required amount of organic matter (OM) and inorganic carbon (IC) to make it suitable as a buffering material that would help to modify/treat geomaterials exhibiting extreme pH values.
View Article and Find Full Text PDF