Publications by authors named "Venkata Sai Sundar Kandarpa"

Low-dose emission tomography (ET) plays a crucial role in medical imaging, enabling the acquisition of functional information for various biological processes while minimizing the patient dose. However, the inherent randomness in the photon counting process is a source of noise which is amplified low-dose ET. This review article provides an overview of existing post-processing techniques, with an emphasis on deep neural network (NN) approaches.

View Article and Find Full Text PDF

Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: dual-energy computed tomography (DECT) and photon-counting computed tomography (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications.

View Article and Find Full Text PDF

Low-dose emission tomography (ET) plays a crucial role in medical imaging, enabling the acquisition of functional information for various biological processes while minimizing the patient dose. However, the inherent randomness in the photon counting process is a source of noise which is amplified in low-dose ET. This review article provides an overview of existing post-processing techniques, with an emphasis on deep neural network (NN) approaches.

View Article and Find Full Text PDF

Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: dual-energy computed tomography (DECT) and photon-counting computed tomography (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications.

View Article and Find Full Text PDF

Purpose: Deep learning is an emerging reconstruction method for positron emission tomography (PET), which can tackle complex PET corrections in an integrated procedure. This paper optimizes the direct PET reconstruction from sinogram on a long axial field of view (LAFOV) PET.

Methods: This paper proposes a novel deep learning architecture to reduce the biases during direct reconstruction from sinograms to images.

View Article and Find Full Text PDF