Publications by authors named "Venkata S Raman"

Glucose-dependent insulinotropic peptide (GIP) is a 42-amino acid peptide hormone that regulates postprandial glucose levels. GIP binds to its cognate receptor, GIPR, and mediates metabolic physiology by improved insulin sensitivity, β-cell proliferation, increased energy consumption, and stimulated glucagon secretion. Dipeptidyl peptidase-4 (DPP4) catalyzes the rapid inactivation of GIP within 6 min .

View Article and Find Full Text PDF

The gut-derived incretin hormone, glucagon-like peptide-1 (GLP1), plays an important physiological role in attenuating post-prandial blood glucose excursions in part by amplifying pancreatic insulin secretion. Native GLP1 is rapidly degraded by the serine protease, dipeptidyl peptidase-4 (DPP4); however, enzyme-resistant analogues of this 30-amino-acid peptide provide an effective therapy for type 2 diabetes (T2D) and can curb obesity via complementary functions in the brain. In addition to its medical relevance, the incretin system provides a fertile arena for exploring how to better separate agonist function at cognate receptors versus susceptibility of peptides to DPP4-induced degradation.

View Article and Find Full Text PDF

The Mas-related G protein-coupled receptor X1 (MrgprX1) is a human seven transmembrane-domain protein with a putative role in nociception and pruritus. This receptor is expressed in dorsal root ganglion neurons and is activated by a variety of endogenous peptides, including bovine adrenal medulla peptide (BAM) and γ2-melanocyte-stimulating hormone (γ2-MSH). In the present work, we study how naturally occurring missense mutations alter the activity of MrgprX1.

View Article and Find Full Text PDF

This paper describes a biophysical investigation of residual mobility in complexes of bovine carbonic anhydrase II (BCA) and para-substituted benzenesulfonamide ligands with chains of 1-5 glycine subunits, and explains the previously observed increase in entropy of binding with chain length. The reported results represent the first experimental demonstration that BCA is not the rigid, static globulin that has been typically assumed, but experiences structural fluctuations upon binding ligands. NMR studies with (15)N-labeled ligands demonstrated that the first glycine subunit of the chain binds without stabilization or destabilization by the more distal subunits, and suggested that the other glycine subunits of the chain behave similarly.

View Article and Find Full Text PDF