Publications by authors named "Venkata S Pendyala"

Installation of automated external defibrillators (AEDs) in public schools has been shown to improve outcomes for children with sudden cardiac arrest (SCA). However, the adequacy of faculty AED training and potential barriers to successful cardiac resuscitation remain unknown. A questionnaire was mailed to all public schools in the state of Illinois (n = 3796).

View Article and Find Full Text PDF

Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining body weight and energy stores. Using a mouse model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we found that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B.

View Article and Find Full Text PDF

Unlabelled: Wilson disease (WD) is a hepatoneurological disorder caused by mutations in the copper-transporter, ATP7B. Copper accumulation in the liver is a hallmark of WD. Current therapy is based on copper chelation, which decreases the manifestations of liver disease, but often worsens neurological symptoms.

View Article and Find Full Text PDF

Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood.

View Article and Find Full Text PDF