Stroke is a serious condition often resulting in mortality or long-term disability, causing cognitive, memory, and motor impairments. A reduction in cerebral blood flow below critical levels defines the ischemic core and penumbra: the core undergoes irreversible damage, while the penumbra remains viable but functionally impaired. This functional impairment activates complex cell signaling pathways that determine cell survival or death, making the penumbra a key target for therapeutic interventions to prevent further damage.
View Article and Find Full Text PDFStroke and kidney dysfunction represent significant public health challenges, yet the precise mechanisms connecting these conditions and their severe consequences remain unclear. Individuals experiencing chronic kidney disease (CKD) and acute kidney injury (AKI) are at heightened susceptibility to experiencing repeated strokes. Similarly, a reduced glomerular filtration rate is associated with an elevated risk of suffering a stroke.
View Article and Find Full Text PDFMetal-binding proteins occur in the cytosol of most eubacteria. The hypothetical metal responsive protein MreA (PP-2969 gene; NreA) seems responsible for zinc, chromium, cadmium accumulation, and metal ion homeostasis. However, there is a lack of definitive evidence regarding the specific metal-binding sites of MreA protein.
View Article and Find Full Text PDFStroke leads to disturbance in the physiology of the ER (Endoplasmic Reticulum) that triggers UPR (Unfolded Protein Response) pathways aimed to compensate neuronal cell damage. However, sustained UPR causes stressful conditions in the ER lumen forming abnormal protein aggregates. Stroke-induced oxidative stress also amalgamates with UPR to safeguard and ensure the proper functioning of brain cells.
View Article and Find Full Text PDFPost-translational modification (PTMs) of proteins by ubiquitin and ubiquitin-like modifiers such as interferon-stimulated gene 15 (ISG15) and small ubiquitin-related modifier (SUMO) play a critical role in the regulation of brain pathophysiology. Protein ISGylation is a covalent attachment of ISG15 to its target proteins, which is a unique PTM among other ubiquitin-like modifiers. Although, ISG15 shares sequence homology to ubiquitin, yet the functional significance of protein ISGylation is distinct from ubiquitination and SUMOylation.
View Article and Find Full Text PDFCerebral malaria (CM) is the severe neurological complication associated with Plasmodium falciparum infection. In clinical settings CM is predominantly characterized by fever, epileptic seizures, and asexual forms of parasite on blood smears, coma and even death. Cognitive impairment in the children and adults even after survival is one of the striking consequences of CM.
View Article and Find Full Text PDFObjective: Loss of cognition even after survival is the salient feature of cerebral malaria (CM). Currently, the fate of neuronal morphology is not studied at the ultrastructural level in CM. Recent studies suggest that maintenance of neuronal morphology and dendritic spine density (actin dynamics in particular) are essential for proper cognitive function.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress induces a variety of neuronal cell death pathways that play a critical role in the pathophysiology of stroke. ER stress occurs when unfolded/misfolded proteins accumulate and the folding capacity of ER chaperones exceeds the capacity of ER lumen to facilitate their disposal. As a consequence, a complex set of signaling pathways will be induced that transmit from ER to cytosol and nucleus to compensate damage and to restore the normal cellular homeostasis, collectively known as unfolded protein response (UPR).
View Article and Find Full Text PDFBackground And Purpose: Long noncoding RNAs (lncRNAs) play a significant role in cellular physiology. We evaluated the effect of focal ischemia on the expression of 8314 lncRNAs in rat cerebral cortex using microarrays.
Methods: Ischemia was induced by transient middle cerebral artery occlusion.
Background And Purpose: The PIWI-interacting RNA (piRNA) is the most predominant RNA species in eukaryotes. The piRNA are a class of noncoding RNAs that bind and degrade the RNA formed by the transposons to control the transposon-induced gene mutations. The role of piRNA after focal ischemia is not yet evaluated.
View Article and Find Full Text PDFThe efficient functioning of the ER is indispensable for most of the cellular activities and survival. Disturbances in the physiological functions of the ER result in the activation of a complex set of signaling pathways from the ER to the cytosol and nucleus, and these are collectively known as unfolded protein response (UPR), which is aimed to compensate damage and can eventually trigger cell death if ER stress is severe or persists for a longer period. The precise molecular mechanisms that facilitate this switch in brain damage have yet to be understood completely with multiple potential participants involved.
View Article and Find Full Text PDFThe endoplasmic reticulum(ER) stress plays a vital role in mediating ischemic neuronal cell death. However, very little is known about the role of ER stress in mediating pathophysiological reactions to acute brain injuries. An attempt was therefore made to assess the role of cerebral ischemia/reperfusion (I/R) induced ER stress and its modulation on outcome of ischemic insult.
View Article and Find Full Text PDFCerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death.
View Article and Find Full Text PDF