Publications by authors named "Venkata M Suresh"

The process of assembling astutely designed, well-defined metal-organic cube (MOC) into hydrogel by using a suitable molecular binder is a promising method for preparing processable functional soft materials. Here, we demonstrate charge-assisted H-bonding driven hydrogel formation from Ga-based anionic MOC ((Ga(ImDC))) and molecular binders, like, ammonium ion (NH), N-(2-aminoethyl)-1,3-propanediamine, guanidine hydrochloride and β-alanine. The morphology of the resulting hydrogel depends upon the size, shape and geometry of the molecular binder.

View Article and Find Full Text PDF

A chromophoric oligo( p-phenyleneethynylene) (OPE) bola-amphiphile with dioxyoctyl side chains (HOPE-C) has been self-assembled with Cd to form a 1D coordination polymer, {Cd(OPE-C)(DMF)(HO)} (1), which is further interdigitated to form a 2D network. Such 2D networks are further interwoven to form a 3D supramolecular framework with surface-projected alkyl chains. The desolvated framework showed permanent porosity, as realized from the CO adsorption profile.

View Article and Find Full Text PDF

Bio-inspired self-cleaning surfaces have found industrial applications in oil-water separation, stain resistant textiles, anti-biofouling paints in ships Interestingly, self-cleaning metal-organic framework (MOF) materials having high water contact angles and corrosion resistance have not been realized so far. To address this issue, we have used the fundamentals of self-assembly to expose hydrophobic alkyl chains on a MOF surface. This decreases the surface free energy and hence increases hydrophobicity.

View Article and Find Full Text PDF

A new TPE based low molecular weight gelator (LMWG) which displays both AIE and MCIE phenomena in gel state has been synthesized. LMWG self-assembles to form 1D nanofibers which undergo morphology transformation to coordination polymer gel (CPG) nanotubes upon metal ion coordination. CPG shows enhanced mechanical stability along with tunable emission properties.

View Article and Find Full Text PDF

Reversible and selective capture/detection of F(-) ions in water is of the utmost importance, as excess intake leads to adverse effects on human health. Highly robust Lewis acidic luminescent porous organic materials have potential for efficient sequestration and detection of F(-) ions. Herein, the rational design and synthesis of a boron-based, Lewis acidic microporous organic polymer (BMOP) derived from tris(4-bromo-2,3,5,6-tetramethylphenyl)boron nodes and diethynylbiphenyl linkers with a pore size of 1.

View Article and Find Full Text PDF

Rational design and synthesis of a new low molecular weight gelator (LMWG) having 9,10-diphenylanthracene core and terminal terpyridine is reported. Tb(III) and Eu(III) ion coordination to a LMWG results in green and pink emissive coordination polymer gels, respectively, with coiled nanofiber morphology. Further, control over stoichiometry of LMWG:Tb(III):Eu(III) leads to yellow and white light emitting bimetallic gels.

View Article and Find Full Text PDF

We report a simple methodology for the stabilization of Cu2O nanoparticles of size 2-4 nm on the polar pore surface of a 2D metal-organic framework, {[Zn(Himdc)(bipy)0.5]·DMF} (1). For the first time, a Cu2O@1a (1a: desolvated 1) composite has been utilized as a recyclable catalyst for the Huisgen 1,3-dipolar cycloaddition reaction of terminal alkynes and aliphatic/aromatic azides for the synthesis of 1,2,3-triazoles.

View Article and Find Full Text PDF

We report the design and synthesis of an amide functionalized microporous organic polymer (Am-MOP) prepared from trimesic acid and p-phenylenediamine using thionyl chloride as a reagent. Polar amide (-CONH-) functional groups act as a linking unit between the node and spacer and constitute the pore wall of the continuous polymeric network. The strong covalent bonds between the building blocks (trimesic acid and p-phenylenediamine) through amide bond linkages provide high thermal and chemical stability to Am-MOP.

View Article and Find Full Text PDF

We report the synthesis, structural characterization, and porous properties of two isomeric supramolecular complexes of ([Cd(NH2 bdc)(bphz)0.5 ]⋅DMF⋅H2 O}n (NH2 bdc=2-aminobenzenedicarboxylic acid, bphz=1,2-bis(4-pyridylmethylene)hydrazine) composed of a mixed-ligand system. The first isomer, with a paddle-wheel-type Cd2 (COO)4 secondary building unit (SBU), is flexible in nature, whereas the other isomer has a rigid framework based on a μ-oxo-bridged Cd2 (μ-OCO)2 SBU.

View Article and Find Full Text PDF

We report the design and synthesis of two porous graphene frameworks (PGFs) prepared via covalent functionalization of reduced graphene oxide (RGO) with iodobenzene followed by a C-C coupling reaction. In contrast to RGO, these 3D frameworks show high surface area (BET, 825 m(2) g(-1)) and pore volumes due to the effect of pillaring. Interestingly, both the frameworks show high CO2 uptake (112 wt% for PGF-1 and 60 wt% for PGF-2 at 195 K up to 1 atm).

View Article and Find Full Text PDF